【题目】如图,已知抛物线y=ax2+bx+c与x轴的一个交点A的坐标为(﹣1,0),对称轴为直线x=﹣2.
(1)求抛物线与x轴的另一个交点B的坐标;
(2)点D是抛物线与y轴的交点,点C是抛物线上的另一点.已知以AB为一底边的梯形ABCD的面积为9.求此抛物线的解析式,并指出顶点E的坐标;
(3)点P是(2)中抛物线对称轴上一动点,且以1个单位/秒的速度从此抛物线的顶点E向上运动.设点P运动的时间为t秒.
①当t为 秒时,△PAD的周长最小?当t为 秒时,△PAD是以AD为腰的等腰三角形?(结果保留根号)
②点P在运动过程中,是否存在一点P,使△PAD是以AD为斜边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.
【答案】解:(1)由抛物线的轴对称性及A(﹣1,0),可得B(﹣3,0)。
(2)设抛物线的对称轴交CD于点M,交AB于点N,
由题意可知AB∥CD,由抛物线的轴对称性可得CD=2DM。
∵MN∥y轴,AB∥CD,∴四边形ODMN是矩形。
∴DM=ON=2。∴CD=2×2=4。
∵A(﹣1,0),B(﹣3,0),∴AB=2。
∵梯形ABCD的面积=(AB+CD)OD=9,
∴OD=3,即c=3。
把A(﹣1,0),B(﹣3,0)代入y=ax2+bx+3得
,解得。
∴y=x2+4x+3.
将y=x2+4x+3化为顶点式为y=(x+2)2﹣1,得E(﹣2,﹣1)。。
(3)①2; 4或或。
②存在。
∵∠APD=90°,∠PMD=∠PNA=90°,∴∠PDM+∠APN=90°,∠DPM+∠PDM=90°。
∴∠PDM=∠APN。
∵∠PMD=∠ANP,∴△APN∽△PDM。
∴,即。
∴PN2﹣3PN+2=0,解得PN=1或PN=2。
∴P(﹣2,1)或(﹣2,2)。
【解析】
试题(1)根据抛物线的轴对称性可得抛物线与x轴的另一个交点B的坐标。
(2)先根据梯形ABCD的面积为9,可求c的值,再运用待定系数法可求抛物线的解析式,转化为顶点式可求顶点E的坐标。
(3)①根据轴对称﹣最短路线问题的求法可得△PAD的周长最小时t的值;根据等腰三角形的性质可分三种情况求得△PAD是以AD为腰的等腰三角形时t的值。
②先证明△APN∽△PDM,根据相似三角形的性质求得PN的值,从而得到点P的坐标。
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,抛物线y=ax2+bx经过点A(2,4)和点B(6,0).
(1)求这条抛物线所对应的二次函数的解析式;
(2)直接写出它的开口方向、顶点坐标;
(3)点(x1,y1),(x2,y2)均在此抛物线上,若x1>x2>4,则y1 ________ y2(填“>”“=”或“<”).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ACBE内接于⊙O,AB平分∠CAE,CD⊥AB交AB、AE分别于点H、D.
(1)如图①,求证:BD=BE;
(2)如图②,若F是弧AC的中点,连接BF,交CD于点M,∠CMF=2∠CBF,连接FO、OC,求∠FOC的度数;
(3)在(2)的条件下,连接OD,若BC=4 ,OD=7,求BF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是半径为4的⊙O的直径,P是圆上异于A,B的任意一点,∠APB的平分线交⊙O于点 C,连接AC和BC,△ABC的中位线所在的直线与⊙O相交于点E、F,则EF的长是________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知a满足以下三个条件:①a是整数;②关于x的一元二次方程ax2+4x﹣2=0有两个不相等的实数根;③反比例函数的图象在第二、四象限.
(1)求a的值.
(2)求一元二次方程ax2+4x﹣2=0的根.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AB为⊙O的直径,C为⊙O上一点,CD⊥AB于D,AD=9,BD=4,以C为圆心,CD为半径的圆与⊙O相交于P,Q两点,弦PQ交CD于E,则PEEQ的值是( )
A. 24 B. 9 C. 36 D. 27
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在平面直角坐标系xoy中,点M在x轴的正半轴上,⊙M交x轴于A、B两点,交y轴于C、D两点,且C为弧AE的中点,AE交y轴于G点,若点A的坐标为(-1,0),AE=4
(1)求点C的坐标;
(2)连接MG、BC,求证:MG∥BC
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知:关于x的二次函数的图象与x轴交于点A(1,0)和点B,与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D.
(1)求二次函数的表达式;
(2)在y轴上是否存在一点P,使△PBC为等腰三角形.若存在,请求出点P的坐标;
(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到 达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某工厂大门是一抛物线水泥建筑物(如图),大门地面宽AB=4 m,顶部C离地面高为4.4 m.
(1)以AB所在直线为x轴,抛物线的对称轴为y轴,建立平面直角坐标系,求该抛物线对应的函数表达式;
(2)现有一辆载满货物的汽车欲通过大门,货物顶点距地面2.8 m,装货宽度为2.4 m,请通过计算,判断这辆汽车能否顺利通过大门.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com