精英家教网 > 初中数学 > 题目详情

【题目】如图,已知抛物线y=ax2+bx+c与x轴的一个交点A的坐标为(﹣1,0),对称轴为直线x=﹣2.

(1)求抛物线与x轴的另一个交点B的坐标;

(2)点D是抛物线与y轴的交点,点C是抛物线上的另一点.已知以AB为一底边的梯形ABCD的面积为9.求此抛物线的解析式,并指出顶点E的坐标;

(3)点P是(2)中抛物线对称轴上一动点,且以1个单位/秒的速度从此抛物线的顶点E向上运动.设点P运动的时间为t秒.

当t为   秒时,PAD的周长最小?当t为   秒时,PAD是以AD为腰的等腰三角形?(结果保留根号)

点P在运动过程中,是否存在一点P,使PAD是以AD为斜边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.

【答案】解:(1)由抛物线的轴对称性及A(﹣1,0),可得B(﹣3,0)。

(2)设抛物线的对称轴交CD于点M,交AB于点N,

由题意可知ABCD,由抛物线的轴对称性可得CD=2DM。

MNy轴,ABCD,四边形ODMN是矩形。

DM=ON=2。CD=2×2=4。

A(﹣1,0),B(﹣3,0),AB=2。

梯形ABCD的面积=(AB+CD)OD=9,

OD=3,即c=3。

把A(﹣1,0),B(﹣3,0)代入y=ax2+bx+3得

,解得

y=x2+4x+3.

将y=x2+4x+3化为顶点式为y=(x+2)2﹣1,得E(﹣2,﹣1)。。

(3)2; 4或

存在。

∵∠APD=90°,PMD=PNA=90°,∴∠PDM+APN=90°,DPM+PDM=90°。

∴∠PDM=APN。

∵∠PMD=ANP,∴△APN∽△PDM。

,即

PN2﹣3PN+2=0,解得PN=1或PN=2。

P(﹣2,1)或(﹣2,2)。

【解析】

试题(1)根据抛物线的轴对称性可得抛物线与x轴的另一个交点B的坐标

(2)先根据梯形ABCD的面积为9,可求c的值,再运用待定系数法可求抛物线的解析式,转化为顶点式可求顶点E的坐标

(3)根据轴对称﹣最短路线问题的求法可得PAD的周长最小时t的值;根据等腰三角形的性质可分三种情况求得PAD是以AD为腰的等腰三角形时t的值

先证明APN∽△PDM,根据相似三角形的性质求得PN的值,从而得到点P的坐标

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,抛物线y=ax2+bx经过点A(2,4)和点B(6,0).

(1)求这条抛物线所对应的二次函数的解析式;

(2)直接写出它的开口方向、顶点坐标;

(3)(x1,y1),(x2,y2)均在此抛物线上,若x1>x2>4,则y1 ________ y2(填“>”“=”或“<”).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ACBE内接于O,AB平分CAE,CDAB交AB、AE分别于点H、D.

(1)如图,求证:BD=BE;

(2)如图,若F是弧AC的中点,连接BF,交CD于点M,CMF=2CBF,连接FO、OC,求FOC的度数;

(3)在(2)的条件下,连接OD,若BC=4 ,OD=7,求BF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是半径为4⊙O的直径,P是圆上异于A,B的任意一点,∠APB的平分线交⊙O于点 C,连接ACBC,△ABC的中位线所在的直线与⊙O相交于点E、F,则EF的长是________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知a满足以下三个条件:①a是整数;②关于x的一元二次方程ax2+4x20有两个不相等的实数根;③反比例函数的图象在第二、四象限.

1)求a的值.

2)求一元二次方程ax2+4x20的根.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AB⊙O的直径,C⊙O上一点,CD⊥ABD,AD=9,BD=4,以C为圆心,CD为半径的圆与⊙O相交于P,Q两点,弦PQCDE,则PEEQ的值是( )

A. 24 B. 9 C. 36 D. 27

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系xoy中,点Mx轴的正半轴上,Mx轴于A、B两点,交y轴于C、D两点,且C为AE的中点,AEy轴于G点,若点A的坐标为(-1,0),AE=4

(1)求点C的坐标;

(2)连接MG、BC,求证:MGBC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知:关于x的二次函数的图象与x轴交于点A(1,0)和点B,与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D.

(1)求二次函数的表达式;

(2)y轴上是否存在一点P,使PBC为等腰三角形.若存在,请求出点P的坐标;

(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M 达点B时,点MN同时停止运动,问点MN运动到何处时,MNB面积最大,试求出最大面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某工厂大门是一抛物线水泥建筑物(如图),大门地面宽AB=4 m,顶部C离地面高为4.4 m.

(1)以AB所在直线为x轴,抛物线的对称轴为y轴,建立平面直角坐标系,求该抛物线对应的函数表达式;

(2)现有一辆载满货物的汽车欲通过大门,货物顶点距地面2.8 m,装货宽度为2.4 m,请通过计算,判断这辆汽车能否顺利通过大门.

查看答案和解析>>

同步练习册答案