精英家教网 > 初中数学 > 题目详情

【题目】某工厂大门是一抛物线水泥建筑物(如图),大门地面宽AB=4 m,顶部C离地面高为4.4 m.

(1)以AB所在直线为x轴,抛物线的对称轴为y轴,建立平面直角坐标系,求该抛物线对应的函数表达式;

(2)现有一辆载满货物的汽车欲通过大门,货物顶点距地面2.8 m,装货宽度为2.4 m,请通过计算,判断这辆汽车能否顺利通过大门.

【答案】(1)y=-1.1x2+4.4.(2)这辆汽车能够通过大门.

【解析】

先过AB的中点作AB的垂直平分线建立直角坐标系,得出点A、B、C的坐标,用待定系数法即可求出过此三点的抛物线解析式,判断点(-1.2,2.8)或点(1.2,2.8)与抛物线的关系即可.

解:(1)如图,过AB的中点作AB的垂直平分线,建立平面直角坐标系.点A,B,C的坐标分别为 A(-2,0),B(2,0),C(0,4.4).

设抛物线的表达式为y=a(x-2)(x+2).

将点C(0,4.4)代入得

a(0-2)(0+2)=4.4,解得a=-1.1,

∴y=-1.1(x-2)(x+2)=-1.1x2+4.4.

故此抛物线的表达式为y=-1.1x2+4.4.

(2)∵货物顶点距地面2.8 m,装货宽度为2.4,

∴只要判断点(-1.2,2.8)或点(1.2,2.8)与抛物线的位置关系即可.

将x=1.2代入抛物线,得 y=2.816>2.8,

∴点(-1.2,2.8)和点(1.2,2.8)都在抛物线内.

∴这辆汽车能够通过大门.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=ax2+bx+c与x轴的一个交点A的坐标为(﹣1,0),对称轴为直线x=﹣2.

(1)求抛物线与x轴的另一个交点B的坐标;

(2)点D是抛物线与y轴的交点,点C是抛物线上的另一点.已知以AB为一底边的梯形ABCD的面积为9.求此抛物线的解析式,并指出顶点E的坐标;

(3)点P是(2)中抛物线对称轴上一动点,且以1个单位/秒的速度从此抛物线的顶点E向上运动.设点P运动的时间为t秒.

当t为   秒时,PAD的周长最小?当t为   秒时,PAD是以AD为腰的等腰三角形?(结果保留根号)

点P在运动过程中,是否存在一点P,使PAD是以AD为斜边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】直线是同一平面内的一组平行线.

(1)如图1.正方形4个顶点都在这些平行线上,若四条直线中相邻两条之间的距离都是1,其中点,点分别在直线上,求正方形的面积;

(2)如图2,正方形4个顶点分别在四条平行线上,若四条直线中相邻两条之间的距离依次为

①求证:

②设正方形的面积为,求证

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】南沙群岛是我国固有领土,现在我南海渔民要在南沙某海岛附近进行捕鱼作业,当渔船航行至B处时,测得该岛位于正北方向10(1+)海里的C处,为了防止某国海巡警干扰,请求我A处的渔监船前往C处护航.如图,已知C位于A处的东北方向上,A位于B的北偏西30°方向上,则AC之间的距离为(  )

A. 10海里 B. 20海里 C. 20海里 D. 10海里

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线y=ax2+bx+3(a≠0)过A(4,4),B(2,m)两点,点B到抛物线对称轴的距离记为d,满足0<d≤1,则实数m的取值范围是(  )

A. m≤2或m≥3 B. m≤3或m≥4 C. 2<m<3 D. 3<m<4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y1=ax+223y2=x32+1交于点A13),过点Ax轴的平行线,分别交两条抛物线于点BC.则以下结论:

①无论x取何值,y2的值总是正数;

a=1

③当x=0时,y2﹣y1=4

2AB=3AC

其中正确结论是______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx+c(a,b,c是常数,a≠0)与x轴交于A,B两点,顶点P(m,n).给出下列结论:①2a+c<0;②若(﹣,y1),(﹣,y2),(,y3)在抛物线上,则y1>y2>y3;③关于x的方程ax2+bx+k=0有实数解,则k>c﹣n;④当n=﹣ 时,△ABP为等腰直角三角形.其中正确结论是________(填写序号).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,OA、OB、OC都是O的半径,AOB=2BOC

(1)求证:ACB=2BAC

(2)若AC平分OAB,求AOC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线y=x+3与抛物线交于AB两点,点Ax轴上,点B的横坐标为.动点P在抛物线上运动(不与点AB重合),过点Py轴的平行线,交直线AB于点Q.当PQ不与y轴重合时,以PQ为边作正方形PQMN,使MNy轴在PQ的同侧,连结PM.设点P的横坐标为m

1)求bc的值.

2)当点N落在直线AB上时,直接写出m的取值范围.

3)当点PAB两点之间的抛物线上运动时,设正方形PQMN的周长为C,求Cm之间的函数关系式,并写出Cm增大而增大时m的取值范围.

4)当PQM与坐标轴有2个公共点时,直接写出m的取值范围.

查看答案和解析>>

同步练习册答案