精英家教网 > 初中数学 > 题目详情

【题目】如图是一座人行天桥引桥部分的示意图,上桥通道ADBE,水平平台DE和地面AC平行,立柱BC和地面AC垂直,A=37°.已知天桥的高度BC为4.8米,引桥的水平跨度AC为8米,求水平平台DE的长度.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)

【答案】1.6米.

【解析】

试题首先由已知构造直角三角形如图,延长BE交AC于F,由已知BEAD,四边形AFED为平行四边形,所以DE=AF,再解直角三角形BCF求得CF即可求得AF

试题解析:延长BE交AC于点F

ADBE

BFC=A=37°

BCAC,即C=90°

tanBFC

FC=

AF=AC-FC=8-6.4=1.6米

ADBE, DEAC

四边形ADEF是平行四边形

DE=AF=1.6米

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的对角线交于点O,点E、F分别在AB、BC上(AEBE),且EOF=90°,OE、DA的延长线交于点M,OF、AB的延长线交于点N,连接MN.

(1)求证:OM=ON.

(2)若正方形ABCD的边长为4,E为OM的中点,求MN的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线的图象与x轴交于AB两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点.

1)求ABC的坐标;

2)点M为线段AB上一点(点M不与点AB重合),过点Mx轴的垂线,与直线AC交于点E,与抛物线交于点P,过点PPQ∥AB交抛物线于点Q,过点QQN⊥x轴于点N.若点P在点Q左边,当矩形PQMN的周长最大时,求△AEM的面积;

3)在(2)的条件下,当矩形PMNQ的周长最大时,连接DQ.过抛物线上一点Fy轴的平行线,与直线AC交于点G(点G在点F的上方).FG=DQ,求点F的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平面直角坐标系中,二次函数y=x2﹣2x﹣3的部分图象与x轴交于点A、

B(AB的左边),与y轴交于点C,连接BC,D为顶点.

(1)求∠OBC的度数;

(2)在x轴下方的抛物线上是否存在一点Q,使ABQ的面积等于5?如存在,求Q点的坐标,如不存在,说明理由;

(3)点P是第四象限的抛物线上的一个动点(不与点D重合),过点PPF⊥x轴交BC于点F,求线段PF长度的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】位于河南省郑州市的炎黄二帝巨型塑像,是为代表中华民族之创始、之和谐、之统一.塑像由山体CD和头像AD两部分组成.某数学兴趣小组在塑像前50米处的B处测得山体D处的仰角为45°,头像A处的仰角为70.5°,求头像AD的高度.(最后结果精确到0.1米,参考数据:sin70.5°≈0.943,cos70.5°≈0.334,tan70.5°≈2.824)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,一个智能机器人接到如下指令:从原点O出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m.其行走路线如图所示,第1次移动到A1,第2次移动到A2,…,第n次移动到An.则△OA2A2018的面积是(  )

A. 504m2 B. m2 C. m2 D. 1009m2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线yx2+mx2m4m0).

1)证明:该抛物线与x轴总有两个不同的交点;

2)设该抛物线与x轴的两个交点分别为AB(点A在点B的右侧),与y轴交于点CABC三点都在P上.

试判断:不论m取任何正数,P是否经过y轴上某个定点?若是,求出该定点的坐标;若不是,说明理由;

若点C关于直线x的对称点为点E,点D01),连接BEBDDE,△BDE的周长记为l,⊙P的半径记为r,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图直线y=x﹣1与坐标轴交于AB两点P是曲线y=x>0)上一点PAB是以APB=90°的等腰三角形k= _________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着人们生活水平的不断提高旅游已成为人们的一种生活时尚 开发新的旅游项目我市对某山区进行调查发现一瀑布为测量它的高度 量人员在瀑布的对面山上 D 点处测得瀑布顶端 A 点的仰角是 30°,测得瀑布底端 B 点的俯角是 10°,AB 与水平面垂直.又在瀑布下的水平面测得 CG=27m, GF=17.6m(注:C、G、F 三点在同一直线上,CFAB 于点 F).斜坡 CD=20m, 坡角∠ECD=40°.求瀑布 AB 的高度.(参考数据:≈1.73,sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,sin10°≈0.17,cos10°≈0.98,tan10°≈0.18)

查看答案和解析>>

同步练习册答案