精英家教网 > 初中数学 > 题目详情

【题目】已知:如图,内接于,点为弦的中点,的延长线交于点,联结,过点于点,联结.

1)求证:

2)如果的半径为8,且,求的长.

【答案】(1)证明见解析;(2CF=12-12.

【解析】

由等腰三角形的性质得出,由垂径定理得出,证出DE的中位线得出,结合BF⊥DE证出,由角的互余关系即可得出结论;

连接证出是等腰直角三角形,得出再由等腰三角形的性质得出即可得出结论.

证明:如图1所示:

直线AD经过圆心O

E为弦AB的中点,

的中位线.

证明:连接如图所示:

是等腰直角三角形,

,且

BFC= =45°

CFG均为等腰直角三角形,

ABCG=FG=FC

AC=AB=BF=12

AG=BG=6CG=FG=12-6

CF=12-6×=12-12

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在矩形中,小聪同学利用直尺和圆规完成了如下操作:

①分别以点为圆心,以大于的长为半径作弧,两弧相交于点

②作直线,交于点.

请你观察图形解答下列问题:

1的位置关系:

直线是线段____________线;

2)若,求矩形的对角线的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,直线分别与x轴,y轴交于点,点C是第一象限内的一点,且,抛物线经过两点,与x轴的另一交点为D

1)求此抛物线的解析式;

2)判断直线的位置关系,并证明你的结论;

3)点Mx轴上一动点,在抛物线上是否存在一点N,使以四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,RtABC中,∠BAC=90°EAC的中点,AE=2.经过点EABE外接圆的切线交BC于点D,过点CCFBCBE的延长线于点F,连接FDAC于点HFD平分∠BFC

1)求证:DE=DC

2)求证:HE=HC=1

3)求BD的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将沿弦折叠,使折叠后的劣弧恰好经过圆心O,连接并延长交于点C,点P是优弧上的动点,连接.

(1)如图,用尺规面出折叠后的劣弧所在圆的圆心,并求出的度数;

(2)如图,若的切线,,求线段的长;

(3)如图,连接,过点B作的重线,交的延长线于点D,求证:.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元与上网时间x(h)的函数关系如图所示,则下列判断错误的是  

A. 每月上网时间不足25h时,选择A方式最省钱 B. 每月上网费用为60元时,B方式可上网的时间比A方式多

C. 每月上网时间为35h时,选择B方式最省钱 D. 每月上网时间超过70h时,选择C方式最省钱

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点O为坐标原点,菱形ABCD的顶点Ax轴的正半轴上,菱形ABCD的边长为2,顶点C的坐标为

(1)求图像过点B的反比例函数的解析式;

(2)求图像过点AB的一次函数的解析式;

(3)在第一象限内,当以上所求一次函数的图像在所求反比例函数的图像下方时,请直接写出自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】探究:在一次聚会上,规定每两个人见面必须握手,且只握手1.

1)若参加聚会的人数为3,则共握手___次;若参加聚会的人数为5,则共握手___次;

2)若参加聚会的人数为为正整数),则共握手___次;

3)若参加聚会的人共握手28次,请求出参加聚会的人数.

拓展:嘉嘉给琪琪出题:“若线段上共有个点(含端点,),线段总数为30,求的值.”

琪琪的思考:“在这个问题上,线段总数不可能为30.”琪琪的思考对吗?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题背景

1)如图1ABC中,DEBC分别交ABACDE两点,过点EEFABBC于点F.请按图示数据填空:

四边形DBFE的面积

EFC的面积

ADE的面积

探究发现

2)在(1)中,若DEBC间的距离为.请证明

拓展迁移

3)如图2□DEFG的四个顶点在ABC的三边上,若ADGDBEGFC的面积分别为253,试利用(2)中的结论求ABC的面积.

查看答案和解析>>

同步练习册答案