【题目】如图,Rt△ABC中,∠BAC=90°,E是AC的中点,AE=2.经过点E作△ABE外接圆的切线交BC于点D,过点C作CF⊥BC交BE的延长线于点F,连接FD交AC于点H,FD平分∠BFC.
(1)求证:DE=DC;
(2)求证:HE=HC=1;
(3)求BD的长度.
【答案】(1)见解析;(2)见解析;(3).
【解析】
(1)根据切线的定义证得DE⊥BF;然后由角平分线的性质(角平分线上的点到这个角的两边距离相等)证得DE=DC;
(2)根据全等直角三角形的判定定理HL证得Rt△DEF≌Rt△DCF;然后由全等三角形的对应角相等、等腰三角形的“三合一”的性质推知CH=CE=1;
(3)由相似三角形△ABC∽△AEB的对应边成比例求得AB=2;然后在Rt△ABE中利用正切三角函数的定义推知tan∠ABE=;最后由勾股定理、等角的三角函数值相等即可求得BC、CD的长度,从而求得BD=BC-CD.
(1)证明:∵∠BAC=90°,
∴BE是△ABE外接圆的直径;
又∵DE是△ABE外接圆的切线,
∴DE⊥BF;
又∵CF⊥BC,FD平分∠BFC,
∴DE=DC;
(2)证明:∵E是AC的中点,AE=2,
∴CE=AE=2;
在Rt△DEF和Rt△DCF中,
,
∴Rt△DEF≌Rt△DCF(HL),
∴∠EDH=∠CDH,
∴DH是CE边上的中线,DH⊥CE,
∴HE=HC=1;
(3)∵∠ABE+∠AEB=90°,∠AEB=∠FEH,∠FEH+∠DEH=90°,
∴∠ABE=∠DEH=∠DCH,
又∵∠A=∠A,
∴△ABC∽△AEB,
∴AB:AC=AE:AB,
∵AE=2,AC=2AE=4,
∴AB=2,
∴tan∠ABE=;
∴在Rt△ABC中,根据勾股定理知,BC=2;
∵tan∠ABE=tan∠DCH=,
∴DH=,
∴CD=,
∴BD=BC-CD=.
科目:初中数学 来源: 题型:
【题目】类比等腰三角形的定义,我们定义:有一组邻边相等的凸四边形叫做“等邻边四边形”.
概念理解:
如图,在四边形中,添加一个条件使得四边形是“等邻边四边形”.请写出你添加的一个条件,你添加的条件是________.
问题探究:
如图,在“等邻边四边形”中,,,,求对角线的长.
拓展应用:
如图,“等邻边四边形”中,,,,为对角线,试探究,,的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(满分10分)已知二次函数y=﹣x2+2x+m.
(1)如果二次函数的图象与x轴有两个交点,求m的取值范围;
(2)如图,二次函数的图象过点A(3,0),与y轴交于点B,求直线AB与这个二次函数的解析式;
(3)在直线AB上方的抛物线上有一动点D,当D与直线AB的距离DE最大时,求点D的坐标,并求DE最大距离是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2017年5月14日至15日,“一带一路”国际合作高峰论坛在北京举行,本届论坛期间,中国同30多个国家签署经贸合作协议,某厂准备生产甲、乙两种商品共8万件销往“一带一路”沿线国家和地区,已知2件甲种商品与3件乙种商品的销售收入相同,3件甲种商品比2件乙种商品的销售收入多1500元.
(1)甲种商品与乙种商品的销售单价各多少元?
(2)若甲、乙两种商品的销售总收入不低于5400万元,则至少销售甲种商品多少万件?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AC=BC,∠ACB=90°,AB=4,将△ABC绕点A逆时针旋转60°,得到△ADE,连接CE,则CE等于( )
A. 5B. 6C. 2+2D. 2+2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】水产经销商以10元/千克的价格收购了1000千克的鳊鱼围养在湖塘中(假设围养期每条鳊鱼的重量保持不变),据市场推测,经过湖塘围养后的鳊鱼的市场价格每围养一天能上涨1元/千克,在围养过程中(最多围养20天),平均每围养一天有10千克的鳊鱼会缺氧浮水。假设对缺氧浮水的鳊鱼能以5元/千克的价格抛售完.
(1)若围养x天后,该水产经销商将活着的鳊鱼一次性出售,加上抛售的缺氧浮水鳊鱼,能获利8500元,则需要围养多少天?
(2)若围养期内,每围养一天需支出各种费用450元,则该水产经销商最多可获利多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,E、F是四边形ABCD的对角线AC上的两点,AF=CE,DF=BE,DF∥BE.
求证:(1)△AFD≌△CEB.(2)四边形ABCD是平行四边形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,DE分别是AB,AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连CF
(1)求证:四边形BCFE是菱形;
(2)若CE=6,∠BEF=120°,求菱形BCFE的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com