【题目】某汽车租赁公司共有汽车50辆,市场调查表明,当租金为每辆每日200元时可全部租出,当租金每提高10元,租出去的车就减少2辆.
(1)当租金提高多少元时,公司的每日收益可达到10120元?
(2)公司领导希望日收益达到10200元,你认为能否实现?若能,求出此时的租金,若不能,请说明理由.
(3)汽车日常维护要一定费用,已知外租车辆每日维护费为100元,未租出的车辆维护费为50元,当租金为多少元时,公司的利润恰好为5500元?(利润=收益一维护费).
【答案】(1)当租金提高20元或30元时,公司的每日收益可达到10120元;(2)日收益不能达到10200元;(3)当租金为250元时,公司的利润恰好为5500元.
【解析】
(1)设租金提高x元,则每日可租出(50)辆,根据总租金=每辆车的租金×租车辆数,即可得出关于x的一元二次方程,解之即可得出结论;
(2)根据总租金=每辆车的租金×租车辆数,即可得出关于x的一元二次方程,由根的判别式△<0,即可得出该一元二次方程无解,进而可得出日收益不能达到10200元;
(3)根据总租金=每辆车的租金×租车辆数,结合利润=收益维护费,即可得出关于x的一元二次方程,解之即可得出结论.
(1)设租金提高x元,则每日可租出(50﹣)辆,
依据题意,得:(200+x)(50﹣)=10120,
整理,得:x2﹣50x+600=0,
解得:x1=20,x2=30.
答:当租金提高20元或30元时,公司的每日收益可达到10120元.
(2)假设能实现,
依题意,得:(200+x)(50﹣)=10200,
整理,得:x2﹣50x+1000=0,
∵=(﹣50)2﹣4×1×1000=﹣1500<0,
∴该一元二次方程无解,
∴日收益不能达到10200元.
(3)依题意,得:(200+x)(50﹣)﹣100(50﹣)﹣50×=5500,
整理,得:x2﹣100x+2500=0,
解得:x1=x2=50,
∴200+x=250.
答:当租金为250元时,公司的利润恰好为5500元.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=10m,BC=40m,∠C=90°,点P从点A开始沿边AC边向点C以2m/s的速度匀速移动,同时另一点Q由C点开始以3m/s的速度沿着边CB匀速移动,几秒时,△PCQ的面积等于432m2?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(10分)水果店张阿姨以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤,为保证每天至少售出260斤,张阿姨决定降价销售.
(1)若将这种水果每斤的售价降低x元,则每天的销售量是 斤(用含x的代数式表示);
(2)销售这种水果要想每天盈利300元,张阿姨需将每斤的售价降低多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,点E,F分别在边BC,AC上,沿EF所在的直线折叠∠C,使点C的对应点D恰好落在边AB上,若△EFC和△ABC相似,则AD的长为___.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角坐标系中,矩形OABC的边OA在x轴上,OC在y轴上,且B的坐标为(8,6),动点D从B点出发,以1个单位长度每秒的速度向C点运动t秒(D不与B,C重合),连接AD,将△ABD沿AD翻折至△AB'D(B'在矩形的内部或边上),连接DB',DB'所在直线与AC交于点F,与OA所在直线交于点E.
(1)①当t= 秒,B'与F重合;
②求线段CB'的取值范围;
(2)①求EB'的长度(用含t的代数式表示),并求出t的取值范围;
②当t为何值时,△AEF是以AE为底的等腰三角形?并求出此时EC的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则下列结论:①4ac﹣b2<0;②2a﹣b=0;③a+b+c<0;④点M(x1,y1)、N(x2,y2)在抛物线上,若x1<x2<﹣1,则y1>y2,⑤abc>0.其中正确结论的个数是( )
A.5个B.4个C.3个D.2个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】装厂批发某种服装,每件成本为65元,规定不低于10件可以批发,其批发价y(元/件)与批发数量x(件)(x为正整数)之间所满足的函数关系如图所示.
(1)求y与x之间所满足的函数关系式,并写出x的取值范围;
(2)若10≤x≤50(x为正整数),求批发该种服装多少件时,服装厂获得利润600元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】水果店张阿姨以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤.通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤.为保证每天至少售出260斤,张阿姨决定降价销售.
销售这种水果要想每天盈利300元,张阿姨需将每斤的售价降低多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=x+2分别交x,y轴于点A、C,点P是该直线与反比例函数y=的图象,在第一象限内的交点,PB丄x轴,B为垂足,S△ABP=9.
(1)直接写出点A的坐标_____;点C的坐标_____;点P的坐标_____;
(2)已知点Q在反比例函数y=的图象上,其横坐标为6,在x轴上确定一点M,使MP+MQ最小(保留作图痕迹),并求出点M的坐标;
(3)设点R在反比例函数y=的图象上,且在直线PB的右侧,做RT⊥x轴,T为垂足,当△BRT与△AOC相似时,求点R的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com