【题目】某建筑公司甲、乙两个工程队通过公开招标获得某改造工程项目.已知甲队单独完成这项工程的时间是乙队单独完成这项工程时间的倍,由于乙队还有其他任务,先由甲队单独做55天后,再由甲、乙两队合做20天,完成了该项改造工程任务.
(Ⅰ)请根据题意求甲、乙两队单独完成改造工程任务各需多少天;
(Ⅱ)这项改造工程共投资200万元,如果按完成的工程量付款,那么甲、乙两队可获工程款各多少万元?
【答案】(1)甲队单独完成改造工程任务需100天,乙队单独完成改造工程任务需80天;(2)甲队可获工程款150万,乙队可获工程款50万.
【解析】
(1)把工程总量看作单位1,那么有甲单独做的工程量+甲乙合作的工程量=1,若设乙队单独完成需要x天,则甲单独完成需要1.25x天,根据等量关系式列分式方程并求解即可.
(2)先计算乙队完成的工程量,根据所占比例即可得出乙队可获得的工程款,继而得出甲获得的工程款.
解:(Ⅰ)设甲、乙两队单独完成改造工程任务各需1.25x天,x天
依题意得:
整理得:
解得: x=80.
经检验:x=80是原方程的解.
∴1.25x=100(天)
答:甲队单独完成改造工程任务需100天,乙队单独完成改造工程任务需80天;
(Ⅱ)乙队完成的工程量
乙队可获工程款:=50(万).
甲队可获工程款:200-50=150(万).
答:甲队可获工程款150万,乙队可获工程款50万.
科目:初中数学 来源: 题型:
【题目】今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用的时间为t(分钟),所走的路程为s(米),s与t之间的函数关系如图所示,下列说法错误的是( )
A.小明中途休息用了20分钟
B.小明休息前爬山的平均速度为每分钟70米
C.小明在上述过程中所走的路程为6600米
D.小明休息前爬山的平均速度大于休息后爬山的平均速度
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,中,,.、是边、边上的动点,从出发向运动,同时以相同的速度从出发向运动,运动到停止.为中点.
试探究的形状,并说明理由.
在运动过程中,四边形可能成为正方形吗?如能求正方形的边长.
当为多少时,的面积最大?最大面积是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】深圳市某学校抽样调查,A类学生骑共享单车,B类学生坐公交车、私家车等,C类学生步行,D类学生(其它),根据调查结果绘制了不完整的统计图.
类型 | 频数 | 频率 |
A | 30 | |
B | 18 | 0.15 |
C | 0.40 | |
D |
(1)学生共________人, ________, ________;
(2)补全条形统计图;
(3)若该校共有2000人,骑共享单车的有________人.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在平面直角坐标系中,一次函数y=﹣2x+8的图象与x轴,y轴分别交于点A,点C,过点A作AB⊥x轴,垂足为点A,过点C作CB⊥y轴,垂足为点C,两条垂线相交于点B.
(1)线段AB,BC,AC的长分别为AB= ,BC= ,AC= ;
(2)折叠图1中的△ABC,使点A与点C重合,再将折叠后的图形展开,折痕DE交AB于点D,交AC于点E,连接CD,如图2.
请从下列A、B两题中任选一题作答,我选择 题.
A:①求线段AD的长;
②在y轴上,是否存在点P,使得△APD为等腰三角形?若存在,请直接写出符合条件的所有点P的坐标;若不存在,请说明理由.
B:①求线段DE的长;
②在坐标平面内,是否存在点P(除点B外),使得以点A,P,C为顶点的三角形与△ABC全等?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】△在平面直角坐标系中的位置如图所示.
(1)作出△关于轴对称的△,并写出△各顶点的坐标;
(2)将△向右平移6个单位,作出平移后的△,并写出△各顶点的坐标;
(3)观察△和△,它们是否关于某直线对称?若是,请用粗线条画出对称轴.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】Rt△ABC中,∠ACB=90°,AC=BC,点D在斜边AB上,且AD=AC,过点B作BE⊥CD交CD的延长线于点E.
(1)画出符合题意的图形;
(2)求∠BCD的度数;
(3)求证:CD=2BE.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在平面直角坐标系中,O为坐标原点,直线y=kx+b经过点A(﹣2,﹣1),交y轴负半轴于点B,且∠ABO=30°,过点A作直线AC⊥x轴于点C,点P在直线AC上.
(1)k= ;b= ;
(2)设△ABP的面积为S,点P的纵坐标为m.
①当m>0时,求S与m之间的函数关系式;
②当S=2时,求m的值;
③当m>0且S=4时,以BP为边作等边△BPQ,请直接写出符合条件的所有点Q的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=﹣+bx+4与x轴相交于A、B两点,与y轴相交于点C,若已知B点的坐标为B(8,0).
(1)求抛物线的解析式及其对称轴方程.
(2)连接AC、BC,试判断△AOC与△COB是否相似?并说明理由.
(3)在抛物线上BC之间是否存在一点D,使得△DBC的面积最大?若存在请求出点D的坐标和△DBC的面积;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com