【题目】已知抛物线y=ax2﹣4ax+c经过点A(0,2),顶点B的纵坐标为3.将直线AB向下平移,与x轴、y轴分别交于点C、D,与抛物线的一个交点为P,若D是线段CP的中点,则点P的坐标为________.
【答案】(,)
【解析】
试题首先求出顶点坐标,利用待定的系数法求得物线的解析式;求出直线AB,进一步得到直线PC的解析式,由此联立一元二次方程求得结果.
试题解析:抛物线y=ax2-4ax+b的对称轴是x=,顶点坐标为B(2,3),且经过A(0,2),
代入函数解析式得,
解得,
所以函数解析式为y=x2+x+2;
如图,
设P点坐标为(x,x2+x+2),过点P作PQ⊥x轴,垂足为Q,可得到△COD∽△CQP,
,又因为,所以
因此D点坐标为(0,x2+x+1),
经过A、B两点直线AB的解析式为y=x+2,
因此直线CP的解析式为y=x+(-x2+x+1)=-x2+x+1,与抛物线联立方程得,
-x2+x+2=-x2+x+1,解得x=,(负舍去)
代入抛物线解析式可得y=,
因此
考点: 二次函数综合题.
科目:初中数学 来源: 题型:
【题目】在边长为 1 的小正方形组成的网格中,有如图 所示的 A. B 两点,在格点中任 意放置点 C,恰好能使△ABC 的面积为 1,则这样的 C 点有 ( )个
A. 5 个B. 6 个C. 7 个D. 8 个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,O为正方形ABCD对角线的交点,E为AB边上一点,F为BC边上一点,△EBF的周长等于BC的长.
(1)若AB=12,BE=3,求EF的长;
(2)求∠EOF的度数;
(3)若OE=OF,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知函数y=x+1和y=ax+3的图象交于点P,点P的横坐标为1,
(1)关于x,y的方程组 的解是 ;
(2)a= ;
(3)求出函数y=x+1和y=ax+3的图象与x轴围成的几何图形的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我国中东部地区雾霾天气趋于严重,环境治理已刻不容缓.我市某电器商场根据民众健康需要,代理销售某种家用空气净化器,其进价是200元/台.经过市场销售后发现:在一个月内,当售价是400元/台时,可售出200台,且售价每降低10元,就可多售出50台.若供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售任务.
(1)试确定月销售量y(台)与售价x(元/台)之间的函数关系式;并求出自变量x的取值范围;
(2)当售价x(元/台)定为多少时,商场每月销售这种空气净化器所获得的利润w(元)最大?最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】A、B两种机器人都被用来搬运化工原料,A型机器人比B型机器人每小时多搬运30kg,A型机器人搬运900kg与B型机器人搬运600kg所用时间相等,两种机器人每小时分别搬运多少化工原料?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小晶和小红玩掷骰子游戏,每人将一个各面分别标有数字、、、、、的正方体骰子掷一次,把两人掷得的点数相加,并约定:若点数之和等于,则小晶赢;若点数之和等于,则小红赢;若点数之和是其他数,则两人不分胜负,那么( )
A. 小晶赢的机会大 B. 小红赢的机会大
C. 小晶、小红赢的机会一样大 D. 不能确定
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在△ABC中,∠ACB=90°,AC=BC,点D为BC的中点,AB =DE,BE∥AC.
(1)求证:△ABC≌△DEB;
(2)连结AD、AE、CE,如图2.
①求证:CE是∠ACB的角平分线;
②请判断△ABE是什么特殊形状的三角形,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com