【题目】如图,已知函数y=x+1和y=ax+3的图象交于点P,点P的横坐标为1,
(1)关于x,y的方程组 的解是 ;
(2)a= ;
(3)求出函数y=x+1和y=ax+3的图象与x轴围成的几何图形的面积.
【答案】(1);(2)-1;(3)4
【解析】
(1)先求出点P为(1,2),再把P点代入解析式即可解答.
(2)把P(1,2)代入y=ax+3,即可解答.
(3)根据y=x+1与x轴的交点为(﹣1,0),y=﹣x+3与x轴的交点为(3,0),即可得到这两个交点之间的距离,再根据三角形的面积公式,即可解答.
(1)把x=1代入y=x+1,得出y=2,
函数y=x+1和y=ax+3的图象交于点P(1,2),
即x=1,y=2同时满足两个一次函数的解析式.
所以关于x,y的方程组 的解是 .
故答案为;
(2)把P(1,2)代入y=ax+3,
得2=a+3,解得a=﹣1.
故答案为﹣1;
(3)∵函数y=x+1与x轴的交点为(﹣1,0),
y=﹣x+3与x轴的交点为(3,0),
∴这两个交点之间的距离为3﹣(﹣1)=4,
∵P(1,2),
∴函数y=x+1和y=ax+3的图象与x轴围成的几何图形的面积为:×4×2=4.
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD中,,,,对角线BD平分交AC于点P.CE是的角平分线,交BD于点O.
(1)请求出的度数;
(2)试用等式表示线段BE、BC、CP之间的数量关系,并说明理由;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC为锐角三角形,AD是BC边上的高,正方形EFMN的一边MN在边BC上,顶点E、F分别在AB、AC上,其中BC=24cm,高AD=12cm.
(1)求证:△AEF∽△ABC:
(2)求正方形EFMN的边长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某超市用3000元购进某种干果销售,由于销售状况良好,很快售完.超市又调拨9000元资金购进该种干果,但这次的进价比第一次的进价提高了20%,购进干果的数量是第一次的2倍还多300千克,如果超市此时按每千克9元的价格出售,当大部分干果售出后,余下的100千克按售价的8折售完.
(1)该种干果的第一次进价是每千克多少元?
(2)超市第二次销售该种干果盈利了多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,两地相距千米,甲、乙两人都从地去地,图中和分别表示甲、乙两人所走路程(千米)与时间(小时)之间的关系,下列说法: ①乙晚出发小时;②乙出发小时后追上甲;③甲的速度是千米/小时; ④乙先到达地.其中正确的是__________.(填序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=ax2﹣4ax+c经过点A(0,2),顶点B的纵坐标为3.将直线AB向下平移,与x轴、y轴分别交于点C、D,与抛物线的一个交点为P,若D是线段CP的中点,则点P的坐标为________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+c的自变量x与函数值y的部分对应值如下表:
x | … | ﹣1 | 0 | 1 | 2 | 3 | … |
y | … | ﹣1 | ﹣ | ﹣2 | ﹣ | … |
根据表格中的信息,完成下列各题:
(1)当x=3时,y=________;
(2)当x=_____时,y有最________值为________;
(3)若点A(x1,y1)、B(x2,y2)是该二次函数图象上的两点,且﹣1<x1<0,1<x2<2,试比较两函数值的大小:y1________y2 ;
(4)若自变量x的取值范围是0≤x≤5,则函数值y的取值范围是________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,重庆某广场新建与建筑物垂直的空中玻璃走廊与相连,与地面垂直.在处测得建筑物顶端的仰角为,测得建筑物处的仰角为(不计测量人员的身高),为米.图中的点、、、、及直线均在同一平面内.
求、两点的高度差(结果精确到米);
为方便游客,广场从地面上的点新建扶梯,所在斜面的坡度,到地面的距离为米.一广告牌位于的中点处,市政规划要求在点右侧需留出米的行车道,请判断是否需要挪走广告牌,并说明理由.(参考数据:,,,,)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在△ABC中,AB=CB,以BC为直径的⊙O交AC于点E,过点E作⊙O的切线交AB于点F.
(1)求证:EF⊥AB;
(2)若AC=16,⊙O的半径是5,求EF的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com