【题目】如图,边长为的正方形的对角线交于点,把边、分别绕点、同时逆时针旋转得四边形,其对角线交点为,连接.下列结论:
①四边形为菱形;
②;
③线段的长为;
④点运动到点的路径是线段.其中正确的结论共有( )
A. 1个 B. 2个 C. 3个 D. 4个
【答案】C
【解析】
①根据旋转角是60°以及正方形的四个角都是直角可得∠BCD′=30°,然后证明A′B∥CD′,进而得到四边形A′BCD′是平行四边形,再根据A′B=BC,即可证明四边形A′BCD′是菱形;
②根据旋转角是60°求出点B到A′D′的距离是A′B的一半,也就是AB的一半,然后根据正方形的面积公式以及菱形的面积即可证明;
③先求出OA′的长度,再根据菱形的对边相等,减去正方形的边长即可;
④根据旋转的性质,点O以BC的中点为圆心,以BC的一半为半径逆时针旋转可以得到点O′,所以路径是弧而非线段.
①根据题意,∠A′BA=∠D′CD=60°,
∵四边形ABCD是正方形,
∴∠BCD=90°,
∴∠BCD′=30°,
∴∠A′BC+∠BCD′=60°+90°+30°=180°,
∴A′B∥CD′,
又∵A′B=CD′=AB,
∴四边形A′BCD′是平行四边形,
∵AB=BC(正方形的边长相等),
∴四边形A′BCD′是菱形,故本题小题正确;
②∵∠ABA′=60°,AB=2,
∴点B到A′D′的距离是:A′B=AB=1,
∴S四边形A′BCD=BC(A′B)=2×1=2,
S正方形ABCD=BCAB=2×2=4,
∴S四边形A′BCD=S正方形ABCD,故本小题正确;
③∵点O是AC的中点,
∴OA′=A′Bsin60°+BC=2×+×2=+1,
∴OD′=OA′A′D′=+12=1,故本小题正确;
④根据菱形的对角线互相垂直可得△BCO′是直角三角形,
∴以BC的中点为圆心,以BC的一半为半径,点O逆时针旋转可以到达点O′的位置,经过路径是弧而不是线段OO′,故本小题错误.
综上所述,正确的结论有①②③共3个.
故选:C.
科目:初中数学 来源: 题型:
【题目】联想三角形外心的概念,我们可引入如下概念:到三角形的两个顶点距离相等的点,叫做此三角形的准外心.例:已知,则点为的准外心(如图).
如图,为正三角形的高,准外心在高上,且,求的度数.
如图,若为直角三角形,,,,准外心在边上,试探究的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在我市“青山绿水”行动中,某社区计划对面积为的区域进行绿化,经投标由甲、乙两个工程队来完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,如果两队各自独立完成面积为区域的绿化时,甲队比乙队少用6天.
(1)求甲、乙两工程队每天各能完成多少面积的绿化;
(2)若甲队每天绿化费用是1.2万元,乙队每天绿化费用为0.5万元,社区要使这次绿化的总费用不超过40万元,则至少应安排乙工程队绿化多少天?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在中,,,垂足为点,是外角的平分线,,垂足为点,连接交于点.
求证:四边形为矩形;
当满足什么条件时,四边形是一个正方形?并给出证明.
在的条件下,若,求正方形周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知AD是△ABC的角平分线,E、F分别是边AB、AC的中点,连接DE、DF,在不再连接其他线段的前提下,要使四边形AEDF成为菱形,还需添加一个条件,这个条件可以是 ;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图1,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,
①写出图中一对全等的三角形,并写出它们的所有对应角;
②设的度数为x,∠的度数为,那么∠1,∠2的度数分别是多少?(用含有x或y的代数式表示)
③∠A与∠1、∠2之间有一种数量关系始终保持不变,请找出这个规律.
(2)如图2,把△ABC纸片沿DE折叠,当点A落在四边形BCDE外部时,∠A与∠1、∠2的数量关系是否发生变化?如果发生变化,求出∠A与∠1、∠2的数量关系;如果不发生变化,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了保护环境和提高果树产量,某果农计划从甲、乙两个仓库用汽车向A、B两个果园运送有机化肥,甲、乙两个仓库分别可运出80吨和100吨有机化肥,A、B两个果园分别需要110吨和70吨有机化肥.甲仓库到A、B两个果园的路程分别为15千米和25千米,乙仓库到A、B两个果园的路程都是20千米.设甲仓库运往A果园x吨有机化肥,解答下列问题:
(1)甲仓库运往B果园 吨有机化肥,乙仓库运往B果园 吨有机化肥;
(2)若汽车每吨每千米的运费为2元,设总运费为y元,求y关于x的函数表达式,并求当甲仓库运往A果园多少吨有机化肥时,总运费最省?此时的总运费是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们将如图所示的两种排列形式的点的个数分别称作“三角形数”(如1,3,6,10……) 和“正方形数”(如1,4,9,16……),在小于200的数中,设最大的“三角形数”为t,最大的“正方形数”为m,则t+m的值为( )
A.33B.301C.386D.571
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com