【题目】已知:如图,AB是⊙O的直径,BC是弦,OD⊥BC于点F,交⊙O于点D,连接AD、CD,∠E=∠ADC.
(1)求证:BE是⊙O的切线;
(2)若BC=6,tanA =,求⊙O的半径.
【答案】(1)见解析(2)⊙O的半径为.
【解析】
(1)要证BE是⊙O的切线,即可转化为证明∠ABE=90°即可;
(2)连接BD,利用垂径定理与圆周角定理可求出DF的长,设OB=x,则OF=x-DF,再利用勾股定理即可求出x的值,即⊙O的半径.
(1)证明:∵OD⊥BC
∴∠E+∠FBE=90°
∵∠ADC=∠ABC,∠ADC=∠E
∴∠ABC=∠E∴∠ABC+∠FBE=90°
∴BE与⊙O相切;
(2)连接BD,
∵OD⊥BC,
∴
∴∠BCD=∠CBD,
∵∠A=∠BCD
∴∠CBD=∠A
∴tanA=tan∠CBD=,
∵FC=BF=3,
∴DF=2,
在Rt△CFD中,设半径OB=x,则OF=x-2,
∴
解得
∴⊙O的半径为.
科目:初中数学 来源: 题型:
【题目】如图所示图案是我国汉代数学家赵爽在注解《周髀算经》时给出的,人们称它为”赵爽弦图“.已知AE=4,BE=3,若向正方形ABCD内随意投掷飞镖(每次均落在正方形ABCD内,且落在正方形ABCD内任何一点的机会均等),则恰好落在正方形EFGH内的概率为( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,边长为1的正方形ABCD,点P为边AD上一动点(不与点A重合).连接BP,将△ABP沿直线BP折叠,点A落在点A′处,如果点A′恰好落在正方形ABCD的对角线上,则AP的长为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=﹣x+5与x轴交于点B,与y轴交于点C,抛物线y=﹣x2+bx+c与直线y=﹣x+5交于B,C两点,已知点D的坐标为(0,3)
(1)求抛物线的解析式;
(2)点M,N分别是直线BC和x轴上的动点,则当△DMN的周长最小时,求点M,N的坐标,并写出△DMN周长的最小值;
(3)点P是抛物线上一动点,在(2)的条件下,是否存在这样的点P,使∠PBA=∠ODN?若存在,请直接写出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2+bx+c的图象与x轴交于点A(﹣1,0)和B(m,0),且3<m<4,则下列说法:①b<0;②a+c=b;③b2>4ac;④2b>3c;⑤=1,正确的是( )
A.①②④B.①③⑤C.②③④D.②③⑤
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,抛物线y1=x2+bx+c经过原点,交x轴于另一点A(4,0),顶点为P.
(1)求抛物线y1的解析式和点P的坐标;
(2)如图2,点Q(0,a)为y轴正半轴上一点,过点Q作x轴的平行线交抛物线y1=x2+bx+c于点M,N,将抛物线y1=x2+bx+c沿直线MN翻折得到新的抛物线y2,点P落在点B处,若四边形BMPN的面积等于,求a的值及点B的坐标;
(3)如图3,在(2)的条件下,在第一象限的抛物线y1=x2+bx+c上取一点C,连接OC,作CD⊥OB于D,BE⊥OC交x轴于E,连接DE,若∠BEO=∠DEA,求点C的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,以BC为斜边作等腰直角三角形BCD,E是△BCD内一点,连接BE和EC,BE=AB,∠BEC+∠BAC=180°.若EC=1,tan∠ABC= ,则线段BD的长是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A在反比例函数y=(x<0)的图象上,点B在X轴的负半轴上,AB=AO=13,线段OA的垂直平分线交线段AB于点C,△BOC的周长为23,则k的值为( )
A.60B.30C.-60D.-30
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com