精英家教网 > 初中数学 > 题目详情

【题目】问题探究:如图,在正方形中,点在边上,点在边上,且.线段相交于点的中线.

1)求证:

2)判断线段之间的数量关系,并说明理由.

问题拓展:如图,在矩形中,.点在边上,点在边上,且,线段相交于点.若的中线,则线段的长为   

【答案】1)证明见解析;(2,理由见解析,

【解析】

1)根据正方形的性质得,由SAS可证

2)由从而可得根据直角三角形的性质,即可求解;问题拓展:根据锐角的正切函数可得从而得进而可得,结合勾股定理,即可求解.

1)∵四边形是正方形,

中,

2,理由如下:

∵在中,是边的中线,

问题拓展:

∵在中,是边的中线,

∵四边形是矩形,

故答案为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为了减少雾霾的侵状,某市环保局与市委各部门协商,要求市民在春节期间禁止燃放烟花爆竹,为了征集市民对禁燃的意见,政府办公室进行了抽样调查,调查意见表设计为:“满意““一般””无所谓””反对”四个选项,调查结果汇总制成如下不完整的统计图,请根据提供的信息解答下面的问题.

(1)参与问卷调查的人数为   

(2)扇形统计图中的m   n   .补全条形统计图;

(3)若本市春节期间留守市区的市民有32000人,请你估计他们中持“反对”意见的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:四边形 ABCD 内接于⊙O,连接 ACBD,∠BAD+2ACB=180°

1)如图 1,求证:点 A 为弧 BD 的中点;

2)如图 2,点 E 为弦 BD 上一点,延长 BA 至点 F,使得 AF=AB,连接 FE AD 于点 P,过点 P PHAF 于点 HAF=2AH+AP,求证:AH:AB=PE:BE

3)在(2)的条件下,如图 3,连接 AE,并延长 AE 交⊙O 于点 M,连接 CM,并延长 CM AD 的延长线于点 N,连接 FD,∠MND=MEDDF=12sinACBMN=,求 AH 的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知锐角∠AOB如图,(1)在射线OA上取一点C,以点O为圆心,OC长为半径作,交射线OB于点D,连接CD

2)分别以点CD为圆心,CD长为半径作弧,交于点MN

3)连接OMMN

根据以上作图过程及所作图形,下列结论中错误的是(

A. ∠COM=∠CODB. OM=MN,则∠AOB=20°

C. MN∥CDD. MN=3CD

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知,以为直径作半圆,半径绕点顺时针旋转得到,点的对应点为,当点与点重合时停止.连接并延长到点,使得,过点于点,连接

1______

2)如图,当点与点重合时,判断的形状,并说明理由;

3)如图,当时,求的长;

4)如图,若点是线段上一点,连接,当与半圆相切时,直接写出直线的位置关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市为了改善市区交通状况,计划在康富路的北端修建通往资江北岸的新大桥,如图,新大桥的两端位于AB两点,小张为了测量AB之间的河宽,在垂直于新大桥AB的直线型道路l上测得如下数据:∠BDA=76∠BCA=68CD=82米.求:AB的长(精确到01米,参考数据:sin761°≈097cos761°≈024tan761°≈40sin682°≈093cos682°≈037tan682°≈25).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB4BC6EBC的中点,连接AEP是边AD上一动点,沿过点P的直线将矩形折叠,使点D落在AE上的点D′处,当△APD′是直角三角形时,PD_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平行四边形ABCD中,点O是对角线AC的中点,点MBC上一点,连接AM,且AB=AM,点EBM中点,AFAB,连接EF,延长FOAB于点N.

(1)若BM=4,MC=3,AC=,求AM的长度;

(2)若∠ACB=45°,求证:AN+AF=EF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,BC⊙O的直径,点A上,AD⊥BC,垂足为DBE分别交ADAC与点FG

1)证明:FA=FB

2BD=DO=2,求弧EC的长度.

查看答案和解析>>

同步练习册答案