【题目】如图,AB=AC,AD=AE,点D在线段BE上,且∠BAC=∠DAE.当∠BAD=15°,∠ACE=25°时,∠BEC=_____.
【答案】100°.
【解析】
根据已知条件可证明△BAD≌△CAE,得出∠ABD=25°,∠CAE=15°,从而得出∠ADE=∠ABD+∠BAD=40°,∠AEC=140°,又因为AD=AE,进一步得出结论.
解:∵∠BAC=∠DAE,
∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,
∴∠BAD=∠CAE,
在△BAD和△CAE中,
∴△BAD≌△CAE(SAS),
∴∠ABD=∠ACE,
∵∠BAD=15°,∠ACE=25°,
∴∠ABD=25°,∠CAE=15°,
∴∠ADE=∠ABD+∠BAD=40°,∠AEC=140°,
∵AD=AE,
∴∠ADE=∠AED,
∴∠AED=40°,
∴∠BEC=∠AEC﹣∠AED=140°﹣40°=100°,
故答案为:100°.
科目:初中数学 来源: 题型:
【题目】已知:把和按如图甲摆放(点与点重合),点、、在同一条直线上.,,,,.如图乙,从图甲的位置出发,以的速度沿向匀速移动,在移动的同时,点从的顶点出发,以的速度沿向点匀速移动.当点移动到点时,点停止移动,也随之停止移动.与相交于点,连接、,设移动时间为.解答下列问题:
设三角形的面积为,求与之间的函数关系式,并写出自变量的取值范围;
当为何值时,三角形为等腰三角形?
是否存在某一时刻,使、、三点在同一条直线上?若存在,求出此时的值;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,已知CF是△ABC的外角∠ACE的角平分线,D为CF上一点,且DA=DB.
(1)求证:∠ACB=∠ADB;
(2)求证:AC+BC<2BD;
(3)如图2,若∠ECF=60°,证明:AC=BC+CD.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.
(1)求证:△ABC≌△ADE;
(2)求∠FAE的度数;
(3)求证:CD=2BF+DE.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,线段AB 是⊙O的直径,弦CD⊥AB于点H,点M是弧CBD 上任意一点,AH=2,CH=4.
(1)求⊙O 的半径r 的长度;
(2)求sin∠CMD;
(3)直线BM交直线CD于点E,直线MH交⊙O 于点 N,连接BN交CE于点 F,求HEHF的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下面材料:
数学活动课上,老师出了一道作图问题:“如图,已知直线l和直线l外一点P.用直尺和圆规作直线PQ,使PQ⊥l于点Q.”
小艾的作法如下:
(1)在直线l上任取点A,以A为圆心,AP长为半径画弧.
(2)在直线l上任取点B,以B为圆心,BP长为半径画弧.
(3)两弧分别交于点P和点M
(4)连接PM,与直线l交于点Q,直线PQ即为所求.
老师表扬了小艾的作法是对的.
请回答:小艾这样作图的依据是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知菱形ABCD,AB=AC,E、F分别是BC,AD的中点,连接AE、CF.
(1)求证:四边形AECF是矩形;
(2)若AB=2,求菱形的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两名队员参加射击训练,每人射击10次,成绩分别如下:
根据以上信息,整理分析数据如下:
平均成绩/环 | 中位数/环 | 众数/环 | 方差 | |
甲 | a | 7 | 7 | 1.2 |
乙 | 7 | b | 8 | c |
(1)a=_____;b=_____;c=_____;
(2)填空:(填“甲”或“乙”).
①从平均数和中位数的角度来比较,成绩较好的是_____;
②从平均数和众数的角度来比较,成绩较好的是_____;
③成绩相对较稳定的是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC是边长为8等边三角形,如图所示,现有两点M、N分别从点A、点B同时出发,沿三角形的边运动,已知点M的速度为每秒1个单位长度,点N的运度为每秒2个单位长度,当点M第一次到达B点时,M、N同时停止运动.
(1)点M、N运动几秒后,可得到等边三角形?
(2)点M、N运动几秒后,M、N两点重合?
(3)当点M、N在BC边上运动时,能否得到以MN为底边的等腰?如存在,请求出此时M、N运动的时间.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com