【题目】已知:把
和
按如图甲摆放(点
与点
重合),点
、
、
在同一条直线上.
,
,
,
,
.如图乙,
从图甲的位置出发,以
的速度沿
向
匀速移动,在
移动的同时,点
从
的顶点
出发,以
的速度沿
向点
匀速移动.当点
移动到点
时,
点停止移动,
也随之停止移动.
与
相交于点
,连接
、
,设移动时间为
.解答下列问题:
设三角形
的面积为
,求
与
之间的函数关系式,并写出自变量
的取值范围;
当
为何值时,三角形
为等腰三角形?
是否存在某一时刻
,使
、
、
三点在同一条直线上?若存在,求出此时
的值;若不存在,说明理由.
![]()
【答案】(1)
;(2)
;(3)当
,点
、
、
三点在同一条直线上.
【解析】
(1)在Rt△DEF中由勾股定理可以得到DF=10.同理,在Rt△ABC中,∠ABC=45°,所以△ABC为等腰直角三角形;由DE⊥BC,∠ACB=45°,知△QEC也是等腰直角三角形,所以,QE=CE=t,则BE=BC-CE=9-t;则△BQE的面积y=
BEQE(0<t≤
);
(2)在Rt△DEF中,DE=6,DF=10,所以,cos∠D=
,sin∠D=
;在Rt△PDG中,通过sin∠D求得PG、cos∠D解得DG,
那么GQ=DQ-DG;在Rt△PGQ中,利用勾股定理,求得PQ2.若△DPQ为等腰三角形时,分三种情况:①若DP=DQ;②若DP=PQ;③当DQ=PQ时;
(3)①当t=0时,点B、P、Q在同一条直线上;
②当B、Q、P在同一直线上时,过点P作DE的垂线,垂足为G,则PG∥BE,△DPG∽△DFE;然后由相似三角形的对应边成比例求得 PG、DG的值,而DQ=6-t,所以求得GQ=DQ-DG的值,根据平行线的判定定理知GP∥BE,可证△GPQ∽△QBE,所以,
GP:BE=GQ:EQ,从而解得t=
,点B、Q、P在同一直线上.
解:
![]()
(1)∠ACB=45°,∠DEF=90°,
∴∠EQC=45°.
∴EC=EQ=t,
∴BE=9-t.
∴y=
BEEQ=
(9t)t,
即:y=
t2+
t(0<t≤
)
(2)①当DQ=DP时,∴6-t=10-3t,解得:t=2s.
②当PQ=PD时,过P作PH⊥DQ,交DE于点H,
则DH=HQ=
,由HP∥EF,
∴
=
则
=
,解得t=
s
![]()
③当QP=QD时,过Q作QG⊥DP,交DP于点G,
则GD=GP=
,可得:△DQG∽△DFE,
∴
=
,则
=
,
解得t=
s(2分)
(3)假设存在某一时刻t,
使点P、Q、B三点在同一条直线上.
则,过P作PI⊥BF,交BF于点I,
∴PI∥DE,![]()
于是:
,
∴PI=
t,FI=
t,
∴
=
,则
=
,
解得:t=
s.
答:当t=
s,点P、Q、B三点在同一条直线上.
科目:初中数学 来源: 题型:
【题目】一列快车由甲地开往乙地,一列慢车由乙地开往甲地,两车同时出发,匀速运动.快车离乙地的路程y1(km)与行驶的时间x(h)之间的函数关系,如图中线段AB所示,慢车离乙地的路程y2(km)与行驶的时间x(h)之间的函数关系,如图中线段OC所示,根据图像进行以下研究:
![]()
![]()
(1)甲、乙两地之间的距离为 km;线段AB的解析式为 ;线段OC的解析式为 ;
(2)经过多长时间,快慢车相距50千米?
(3)设快、慢车之间的距离为y(km),并画出函数的大致图像.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在等边△ABC中.
(1)如图1,P,Q是BC边上两点,AP=AQ,∠BAP=20°,求∠AQB的度数;
(2)点P,Q是BC边上的两个动点(不与B,C重合),点P在点Q的左侧,且AP=AQ,点Q关于直线AC的对称点为M,连接AM,PM.
①依题意将图2补全;
②求证:PA=PM.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+3经过点 B(﹣1,0),C(2,3),抛物线与y轴的焦点A,与x轴的另一个焦点为D,点M为线段AD上的一动点,设点M的横坐标为t.
(1)求抛物线的表达式;
(2)过点M作y轴的平行线,交抛物线于点P,设线段PM的长为1,当t为何值时,1的长最大,并求最大值;(先根据题目画图,再计算)
(3)在(2)的条件下,当t为何值时,△PAD的面积最大?并求最大值;
(4)在(2)的条件下,是否存在点P,使△PAD为直角三角形?若存在,直接写出t的值;若不存在,说明理由.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在
中,点
是
边上的一个动点,过点
作直线
,设
交
的角平分线于点
,交
的外角平分线于点
.
(1)求证:
;
(2)当点
运动到何处时,四边形
是矩形?并证明你的结论.
(3)当点
运动到何处,且
满足什么条件时,四边形
是正方形?并说明理由.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O是△ABC的外接圆,BC是⊙O的直径,∠ABC=30°,过点B作⊙O的切线BD,与CA的延长线交于点D,与半径AO的延长线交于点E,过点A作⊙O的切线AF,与直径BC的延长线交于点F.
(1)求证:△ACF∽△DAE;
(2)若S△AOC=
,求DE的长;
(3)连接EF,求证:EF是⊙O的切线.
![]()
【答案】(1) 见解析; (2)3
;(3)见解析.
【解析】试题分析:(1)根据圆周角定理得到∠BAC=90°,根据三角形的内角和得到∠ACB=60°根据切线的性质得到∠OAF=90°,∠DBC=90°,于是得到∠D=∠AFC=30°由相似三角形的判定定理即可得到结论;
(2)根据S△AOC=
,得到S△ACF=
,通过△ACF∽△DAE,求得S△DAE=
,过A作AH⊥DE于H,解直角三角形得到AH=
DH=
DE,由三角形的面积公式列方程即可得到结论;
(3)根据全等三角形的性质得到OE=OF,根据等腰三角形的性质得到∠OFG=
(180°﹣∠EOF)=30°,于是得到∠AFO=∠GFO,过O作OG⊥EF于G,根据全等三角形的性质得到OG=OA,即可得到结论.
试题解析:(1)证明:∵BC是⊙O的直径,∴∠BAC=90°,∵∠ABC=30°,∴∠ACB=60°
∵OA=OC,∴∠AOC=60°,∵AF是⊙O的切线,∴∠OAF=90°,∴∠AFC=30°,∵DE是⊙O的切线,∴∠DBC=90°,∴∠D=∠AFC=30,∵∠DAE=ACF=120°,∴△ACF∽△DAE;
(2)∵∠ACO=∠AFC+∠CAF=30°+∠CAF=60°,∴∠CAF=30°,∴∠CAF=∠AFC,∴AC=CF,∴OC=CF,∵S△AOC=
,∴S△ACF=
,∵∠ABC=∠AFC=30°,∴AB=AF,∵AB=
BD,∴AF=
BD,∴∠BAE=∠BEA=30°,∴AB=BE=AF,∴
,∵△ACF∽△DAE,∴
=
,∴S△DAE=
,过A作AH⊥DE于H,∴AH=
DH=
DE,∴S△ADE=
DEAH=
×![]()
=
,∴DE=
;
(3)∵∠EOF=∠AOB=120°,∴∠OEB=∠AFO,在△AOF与△BOE中,∵∠OBE=∠OAF,∠OEB=∠AFO,OA=OB,∴△AOF≌△BEO,∴OE=OF,∴∠OFG=
(180°﹣∠EOF)=30°,∴∠AFO=∠GFO,过O作OG⊥EF于G,∴∠OAF=∠OGF=90°,在△AOF与△OGF中,∵∠OAF=∠OGF,∠AFO=∠GFO,OF=OF,∴△AOF≌△GOF,∴OG=OA,∴EF是⊙O的切线.
![]()
【题型】解答题
【结束】
25
【题目】如图,在平面直角坐标系中,O为原点,四边形ABCO是矩形,点A,C的坐标分别是A(0,2)和C(2
,0),点D是对角线AC上一动点(不与A,C重合),连结BD,作DE⊥DB,交x轴于点E,以线段DE,DB为邻边作矩形BDEF.
(1)填空:点B的坐标为 ;
(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD的长度;若不存在,请说明理由;
(3)①求证:
;
②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),并求出y的最小值.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,直线l:y=x﹣1与x轴交于点A1,如图所示依次作正方形A1B1C1O、正方形A2B2C2C1、正方形A3B3C3C2、…、正方形AnBnnCn﹣1,使得点A1、A2、A3…在直线l上,点C1、C2、C3…在y轴正半轴上,则△A2018A2019B2018的面积是_____.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将一块长方形纸片ABCD沿BD翻折后,点C与E重合,若∠ADB=30°,EH=2cm,则BC的长度为( )cm.
![]()
A.8B.7C.6D.5
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com