【题目】如图,直线l:y=﹣3x+3与x轴、y轴分别相交于A、B两点,抛物线y=ax2﹣2ax+a+4(a<0)经过点B,交x轴正半轴于点C.
(1)求该抛物线的函数表达式;
(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M的横坐标为m,△ABM的面积为S,求S与m的函数表达式,并求出S的最大值及此时动点M的坐标;
(3)将点A绕原点旋转得点A′,连接CA′、BA′,在旋转过程中,一动点M从点B出发,沿线段BA′以每秒3个单位的速度运动到A′,再沿线段A′C以每秒1个单位长度的速度运动到C后停止,求点M在整个运动过程中用时最少是多少?
【答案】(1)y=﹣x2+2x+3;(2)S与m的函数表达式是S=,S的最大值是,此时动点M的坐标是(,);(3)点M在整个运动过程中用时最少是秒.
【解析】
(1)首先求出B点的坐标,根据B点的坐标即可计算出二次函数的a值,进而即可计算出二次函数的解析式;
(2)计算出C点的坐标,设出M点的坐标,再根据△ABM的面积为S=S四边形OAMB﹣S△AOB=S△BOM+S△OAM﹣S△AOB,化简成二次函数,再根据二次函数求解最大值即可.
(3)首先证明△OHA′∽△OA′B,再结合A′H+A′C≥HC即可计算出t的最小值.
(1)将x=0代入y=﹣3x+3,得y=3,
∴点B的坐标为(0,3),
∵抛物线y=ax2﹣2ax+a+4(a<0)经过点B,
∴3=a+4,得a=﹣1,
∴抛物线的解析式为:y=﹣x2+2x+3;
(2)将y=0代入y=﹣x2+2x+3,得x1=﹣1,x2=3,
∴点C的坐标为(3,0),
∵点M是抛物线上的一个动点,并且点M在第一象限内,点M的横坐标为m,
∴0<m<3,点M的坐标为(m,﹣m2+2m+3),
将y=0代入y=﹣3x+3,得x=1,
∴点A的坐标(1,0),
∵△ABM的面积为S,
∴S=S四边形OAMB﹣S△AOB=S△BOM+S△OAM﹣S△AOB=,
化简,得
S==,
∴当m=时,S取得最大值,此时S=,此时点M的坐标为(,),
即S与m的函数表达式是S=,S的最大值是,此时动点M的坐标是(,);
(3)如右图所示,取点H的坐标为(0,),连接HA′、OA′,
∵∠HOA′=∠A′OB,,,
∴△OHA′∽△OA′B,
∴,
即,
∵A′H+A′C≥HC=,
∴t≥,
即点M在整个运动过程中用时最少是秒.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(1,1),B(4,1),C(3,3).
(1)将△ABC向下平移5个单位后得到△A1B1C1,请画出△A1B1C1;
(2)将△ABC绕原点O逆时针旋转90°后得到△A2B2C2,请画出△A2B2C2;
(3)判断以O,A1,B为顶点的三角形的形状.(无须说明理由)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们定义一种新函数:形如(,且)的函数叫做“鹊桥”函数.小丽同学画出了“鹊桥”函数y=|x2-2x-3|的图象(如图所示),并写出下列五个结论:①图象与坐标轴的交点为,和;②图象具有对称性,对称轴是直线;③当或时,函数值随值的增大而增大;④当或时,函数的最小值是0;⑤当时,函数的最大值是4.其中正确结论的个数是______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD和正方形AEFG中,边AE在边AB上,AB=,AE=1.将正方形AEFG绕点A逆时针旋转,设BE的延长线交直线DG于点P,当点P,G第一次重合时停止旋转.在这个过程中:
(1)∠BPD=______度;
(2)点P所经过的路径长为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图1,在矩形ABCD中,对角线AC与BD相交于点O,过点O作直线EF⊥BD,且交AD于点E,交BC于点F,连接BE,DF,且BE平分∠ABD.
①求证:四边形BFDE是菱形;
②直接写出∠EBF的度数.
(2)把(1)中菱形BFDE进行分离研究,如图2,G,I分别在BF,BE边上,且BG=BI,连接GD,H为GD的中点,连接FH,并延长FH交ED于点J,连接IJ,IH,IF,IG.试探究线段IH与FH之间满足的关系,并说明理由;
(3)把(1)中矩形ABCD进行特殊化探究,如图3,矩形ABCD满足AB=AD时,点E是对角线AC上一点,连接DE,作EF⊥DE,垂足为点E,交AB于点F,连接DF,交AC于点G.请直接写出线段AG,GE,EC三者之间满足的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,∠ABC=45°,AB=4,BC=9,直线MN平分平行四边形ABCD的面积,分别交边AD、BC于点M、N,若△BMN是以MN为腰的等腰三角形,则BN=_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,以40m/s的速度将小球沿与地面成30°角的方向击出时,小球的飞行路线将是一条抛物线.如果不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系h=20t﹣5t2.下列叙述正确的是( )
A. 小球的飞行高度不能达到15m
B. 小球的飞行高度可以达到25m
C. 小球从飞出到落地要用时4s
D. 小球飞出1s时的飞行高度为10m
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某电视台为了解本地区电视节目的收视情况,对部分市民开展了“你最喜爱的电视节目”的问卷调查(每人只填写一项),根据收集的数据绘制了两幅不完整的统计图(如图所示),根据要求回答下列问题:
(1)本次问卷调查共调查了________名观众;图②中最喜爱“新闻节目”的人数占调查总人数的百分比为________;
(2)补全图①中的条形统计图;
(3)现有最喜爱“新闻节目”(记为),“体育节目”(记为),“综艺节目”(记为),“科普节目”(记为)的观众各一名,电视台要从四人中随机抽取两人参加联谊活动,请用列表或画树状图的方法,求出恰好抽到最喜爱“”和“”两位观众的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】多好佳水果店在批发市场购买某种水果销售,第一次用1500元购进若干千克,并以每千克9元出售,很快售完.由于水果畅销,第二次购买时,每千克的进价比第一次提高了10%,用1694元所购买的水果比第一次多20千克,以每千克10元售出100千克后,因出现高温天气,水果不易保鲜,为减少损失,便降价45%售完剩余的水果.
(1)第一次水果的进价是每千克多少元?
(2)该水果店在这两次销售中,总体上是盈利还是亏损?盈利或亏损了多少元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com