【题目】如图,△ABC中,∠ACB=90°,AC=BC,AE是BC边上的中线,过C作CF⊥AE,垂足为F,过B作BD⊥BC交CF的延长线于D.
(1)求证:AE=CD;
(2)若AC=12cm,求BD的长.
【答案】
(1)证明:∵DB⊥BC,CF⊥AE,
∴∠DCB+∠D=∠DCB+∠AEC=90°.
∴∠D=∠AEC.
又∵∠DBC=∠ECA=90°,
且BC=CA,
在△DBC和△ECA中,
∵
∴△DBC≌△ECA(AAS).
∴AE=CD
(2)解:由(1)得AE=CD,AC=BC,
在Rt△CDB和Rt△AEC中
,
∴Rt△CDB≌Rt△AEC(HL),
∴BD=CE,
∵AE是BC边上的中线,
∴BD=EC= BC= AC,且AC=12cm.
∴BD=6cm.
【解析】(1)证两条线段相等,通常用全等,本题中的AE和CD分别在三角形AEC和三角形CDB中,在这两个三角形中,已经有一组边相等,一组角相等了,因此只需再找一组角即可利用角角边进行解答.(2)由(1)得BD=EC= BC= AC,且AC=12,即可求出BD的长.
【考点精析】根据题目的已知条件,利用全等三角形的性质的相关知识可以得到问题的答案,需要掌握全等三角形的对应边相等; 全等三角形的对应角相等.
科目:初中数学 来源: 题型:
【题目】敌军基地在三条公路围成的三角区域内,我军一队战士在一条公路中点垂直射击,另一队战士在另一条公路中点垂直射击,均击中敌军基地,问第三队战士在公路何处垂直射击可击中目标?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的方程(k﹣1)x2﹣4x+4=0有实数根(注:此处并未说明此方程为一元二次方程,应分别考虑k=1与k≠1的情形),求k的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点P在∠AOB的内部,点M、N分别是点P关于直线OA、OB的对称点,线段MN交OA、OB于点E、F,若△PEF的周长是30cm,则线段MN的长是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,OB是∠AOC的平分线,OD是∠EOC的平分线.
(1)如果∠AOD=75°,∠BOC=19°,求∠DOE的度数。
(2)如果∠BOD=56°,求∠AOE的度数。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在兰州市开展的“体育、艺术2+1”活动中,某校根据实际情况,决定主要开设A:乒乓球,B:篮球,C:跑步,D:跳绳这四种运动项目.为了解学生喜欢哪一种项目,随机抽取了部分学生进行调查,并将调查结果绘制成如下的条形统计图和扇形统计图.请你结合图中信息解答下列问题:
(1)样本中喜欢B项目的人数百分比是;
(2)把条形统计图补充完整;
(3)已知该校有1 000人,根据样本估计全校喜欢乒乓球的人数是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com