精英家教网 > 初中数学 > 题目详情

【题目】科技改变世界.2017年底,快递分拣机器人从微博火到了朋友圈,据介绍,这些机器人不仅可以自动规划最优路线,将包裹准确地放入相应的格口,还会感应避让障碍物,自动归队取包裹.没电的时候还会自己找充电桩充电.某快递公司启用80台A种机器人、300台B种机器人分拣快递包裹.A,B两种机器人全部投入工作,1小时共可以分拣1.44万件包裹,若全部A种机器人工作3小时,全部B种机器人工作2小时,一共可以分拣3.12万件包裹.

(1)求两种机器人每台每小时各分拣多少件包裹;

(2)为了进一步提高效率,快递公司计划再购进A,B两种机器人共200台,若要保证新购进的这批机器人每小时的总分拣量不少于7000件,求最多应购进A种机器人多少台?

【答案】(1)A种机器人每台每小时各分拣30件包裹,B种机器人每台每小时各分拣40件包裹(2)最多应购进A种机器人100台

【解析】

(1)A种机器人每台每小时各分拣x件包裹,B种机器人每台每小时各分拣y件包裹,根据题意列方程组即可得到结论;

(2)设最多应购进A种机器人a台,购进B种机器人(200a)台,由题意得,根据题意两不等式即可得到结论.

(1)A种机器人每台每小时各分拣x件包裹,B种机器人每台每小时各分拣y件包裹,

由题意得,

解得,

答:A种机器人每台每小时各分拣30件包裹,B种机器人每台每小时各分拣40件包裹;

(2)设最多应购进A种机器人a台,购进B种机器人(200﹣a)台,

由题意得,30a+40(200﹣a)≥7000,

解得:a≤100,则最多应购进A种机器人100台.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在水上治安指挥塔西侧两条航线上有两艘巡逻艇所在航线靠近,直线间的距离,点在点的南偏西方向上,且的北偏东方向上.求:

巡逻艇与塔之间的距离.(结果保留根号)

已知巡逻艇的速度每小时比巡逻艇,当两艘巡逻艇同时到达指挥塔的正南方向时,求巡逻艇的速度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】今年黄金价格一路走高,月份的黄金价格比月份增长了,由于受国际金价的影响,预计月份的黄金价格比月份增长,若这两月黄金价格的平均增长率为,则满足的关系式为(

A. B.

C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降.今年5月份A款汽车的售价比去年同期每辆降价2万元.如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.

1)今年5月份A款汽车每辆销售多少万元?

2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价为8.5万元,B款汽车每辆进价为6万元,公司预计用多于100万元且少于110万元的资金购进这两款汽车共15辆,问有几种进货方案?

3)在(2)的前提下,如果B款汽车每辆售价为12万元,为打开B款汽车的销路,公司决定每售出一辆B款汽车,奖励顾客现金1.8万元,怎样进货公司的利润最大(假设能全部卖出)?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,A,C,E,G四点在同一直线上,分别以线段AC,CE,EG为边在AG同侧作等边三角形△ABC,△CDE,△EFG,连接AF,分别交BC,DC,DE于点H,I,J,若AC=1,CE=2,EG=3,则DIJ的面积是(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】综合与探究:

如图1,抛物线y=﹣x2+x+与x轴分别交于A、B两点(点A在点B的左侧),与y轴交于C点.经过点A的直线l与y轴交于点D(0,﹣).

(1)求A、B两点的坐标及直线l的表达式;

(2)如图2,直线l从图中的位置出发,以每秒1个单位的速度沿x轴的正方向运动,运动中直线l与x轴交于点E,与y轴交于点F,点A 关于直线l的对称点为A′,连接FA′、BA′,设直线l的运动时间为t(t0)秒.探究下列问题:

请直接写出A′的坐标(用含字母t的式子表示);

当点A′落在抛物线上时,求直线l的运动时间t的值,判断此时四边形A′BEF的形状,并说明理由;

(3)在(2)的条件下,探究:在直线l的运动过程中,坐标平面内是否存在点P,使得以P,A′,B,E为顶点的四边形为矩形?若存在,请直接写出点P的坐标; 若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正六边形的边长为,点为六边形内任一点.则点到各边距离之和是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠AOB20°,点MN分别是边OAOB上的定点,点PQ分别是边OBOA上的动点,记∠MPQα,∠PQNβ,当MP+PQ+QN最小时,则βα的值为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】重庆电视台组织了一次学生夏令营活动,有小学生、初中生、高中生和大学生参加,共200人,各类学生人数比例见扇形统计图.

1)参加这次夏令营活动的初中生共有__________.

2)活动组织者号召参加这次夏令营活动的所有学生为贫困学生捐款. 结果小学生每人捐款5元,初中生每人捐款10元,高中生每人捐款15元,大学生每人捐款20元,把每个学生的捐款数(以元为单位)一一记录下来,则在这组数据中,中位数是 元,求出平均每人捐款多少元?

查看答案和解析>>

同步练习册答案