精英家教网 > 初中数学 > 题目详情

【题目】重庆电视台组织了一次学生夏令营活动,有小学生、初中生、高中生和大学生参加,共200人,各类学生人数比例见扇形统计图.

1)参加这次夏令营活动的初中生共有__________.

2)活动组织者号召参加这次夏令营活动的所有学生为贫困学生捐款. 结果小学生每人捐款5元,初中生每人捐款10元,高中生每人捐款15元,大学生每人捐款20元,把每个学生的捐款数(以元为单位)一一记录下来,则在这组数据中,中位数是 元,求出平均每人捐款多少元?

【答案】180;(210;平均每人捐款11.5.

【解析】

1)参加这次夏令营活动的初中生所占比例是:110%20%30%40%,就可以求出人数.

2)小学生、高中生和大学生的人数为200×20%40200×30%60200×10%20,根据平均数公式就可以求出平均数.

3)因为初中生最多,所以众数为初中生捐款数.

1)参加这次夏令营活动的初中生共有200×(110%20%30%)=80人;

故填:80

2)小学生、高中生和大学生的人数为200×20%40200×30%60200×10%20

∴小学生、初中生、高中生和大学生的人数分别为40806020,捐款金额依次为5101520

所以捐款数的100101位在初中生中,即为10元.

故填:10

平均每人捐款=11.5(元);

故平均每人捐款11.5.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】科技改变世界.2017年底,快递分拣机器人从微博火到了朋友圈,据介绍,这些机器人不仅可以自动规划最优路线,将包裹准确地放入相应的格口,还会感应避让障碍物,自动归队取包裹.没电的时候还会自己找充电桩充电.某快递公司启用80台A种机器人、300台B种机器人分拣快递包裹.A,B两种机器人全部投入工作,1小时共可以分拣1.44万件包裹,若全部A种机器人工作3小时,全部B种机器人工作2小时,一共可以分拣3.12万件包裹.

(1)求两种机器人每台每小时各分拣多少件包裹;

(2)为了进一步提高效率,快递公司计划再购进A,B两种机器人共200台,若要保证新购进的这批机器人每小时的总分拣量不少于7000件,求最多应购进A种机器人多少台?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,点ADy轴正半轴上,点BC分别在x轴上,CD平分∠ACB,与y轴交于D点,∠CAO=90°-BDO.

1)求证:AC=BC

2)如图2,点C的坐标为(40),点EAC上一点,且∠DEA=DBO,求BC+EC的长;

3)如图3,过DDFACF点,点HFC上一动点,点GOC上一动点,当HFC上移动、点GOC上移动时,始终满足∠GDH=GDO+FDH,试判断FHGHOG这三者之间的数量关系,写出你的结论并加以证明.

(图3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,E是对角线BD上一点,且满足BE=BC.连接CE并延长交AD于点F,连接AE,过B点作BGAE于点G,延长BGAD于点H.在下列结论中:

AH=DF; ②∠AEF=45°; ③S四边形EFHG=SDEF+SAGH

其中正确的结论有_____________________.(填正确的序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,如图所示的函数图象是由函数y=(x﹣1)2+1(x≥0)的图象C1和图象C2组成中心对称图形,对称中心为点(0,2).已知不重合的两点A、B分别在图象C1C2上,点A、B的横坐标分别为a、b,且a+b=0.当b<x≤a时该函数的最大值和最小值均与a、b的值无关,则a的取值范围为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知二次函数y=ax2+2x+c图象经过点A (1,4)和点C (0,3).

(1)求该二次函数的解析式;

(2)结合函数图象,直接回答下列问题:

当﹣1<x<2时,求函数y的取值范围:   

y≥3时,求x的取值范围:   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校把一块形状为直角三角形的废地开辟为生物园,如图所示,∠ACB=90°AC=40mBC=30m.线段CD是一条水渠,且D点在边AB上,已知水渠的造价为800,问:当水渠的造价最低时,CD长为多少米?最低造价是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】化工材料经销公司购进一种化工原料若干千克,价格为每千克30元。物价部门规定其销售单价不高于每千克60元,不低于每千克30元。经市场调查发现:日销售量y(千克)是销售单价x(元)的一次函数,且当x=60时,y=80;x=50时,y=100。在销售过程中,每天还要支付其他费用450元。

(1)求出y与x的函数关系式,并写出自变量x的取值范围。

(2)求该公司销售该原料日获利w(元)与销售单价x(元)之间的函数关系式。

(3)当销售单价为多少元时,该公司日获利最大?最大获利是多少元。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题背景:在 中,三边的长分别为,求这个三角形的面积.小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为 ),在网格中画出格点 (即 三个顶点都在小正方形的顶点处),如图所示,这样借用网格就能计算出它的面积.

1)请你直接写出 的面积为

2)若三边的长分别为 运用构图法求出这三角形的面积.

查看答案和解析>>

同步练习册答案