分析 根据题意分析图形可得:在Rt△CDF中,由CF=2,tan∠CDF=2,可求得DE,进而得到BE的长.解Rt△AGC可得BE的值,通过比较BE、AB的大小即可求出答案.
解答 解:∵i=1:0.5,CF=2米
∴tan∠CDF=$\frac{CF}{DF}$=2,
∴DF=1米,BG=2米,
∵BD=14米,
∴BF=GC=15米.
在Rt△AGC中,AG=15tan30°=15×$\frac{\sqrt{3}}{3}$=5$\sqrt{3}$≈8.66(米),
∴AB=AG+BG=8.66+2=10.66米,BE=BD-DE=14-2=12(米),
∵10.66<12,
∴没有必要封止DE.
点评 本题考查俯角、仰角的定义,要求学生能借助俯角、仰角构造直角三角形并结合图形利用三角函数解直角三角形.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com