【题目】如图 ,在平面直角坐标系中,边长为 1 的正方形OA1B1C 的对角线 A1C 和OB1 交于点 M1,以 M1A1为对角线作第二个正方形 A2A1B2M1对角线 A1M1和 A2 B2 交于点 M 2 ;以 M 2 A1 为对角线作第三个正方形 A3 A1B3M 2,对角线 A1M 2 和 A3 B3 交于点 M 3 ;…,依此类推,那么 M 1 的坐标为_____;这样作的第 n 个正方形的对角线交点 Mn 的坐标为_____.
【答案】() (1-
【解析】
根据正方形的性质得到OM1=M1A1,∠OM1A1=90°,设OM1=M1A1=x,由勾股定理得到方程x+x=1,解方程求出x的值,同理可以求出其它正方形的边长,进而得到M1的坐标,M2的坐标,…,依此类推可求出第n个正方形对角线交点M的坐标.
解:∵正方形的边长为1,
则正方形四个顶点坐标为O(0,0),C(0,1),B1 (1,1),A1 (1,0),
在正方形OA1B1C中,
∴OM1=M1A1,∠OM1A1=90,
设OM1=M1A1=x,
由勾股定理得:x+x=1,
解得:x=,
同理可求出OA2=A2M1= ,A2M2= ,A2A,…,
根据正方形对角线定理得M1的坐标为(1,);
同理得M2的坐标为(1,);
M的坐标为(1,),
依此类推:M坐标为(1-
故答案为: () (1-
科目:初中数学 来源: 题型:
【题目】有理数运算:
(1)﹣13+28+62﹣77
(2)4﹣4+(﹣3)×(﹣)
(3)﹣12006+[1﹣(2﹣22)×3]+(﹣1)2016
(4)(﹣6)×(﹣)×(﹣8)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将一个有45°角的三角板的直角顶点放在一张宽为3cm的纸带边沿上,另一个顶
点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,如图(3),
则三角板的最大边的长为( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有一个n位自然数能被x0整除,依次轮换个位数字得到的新数能被x0+1整除,再依次轮换个位数字得到的新数能被x0+2整除,按此规律轮换后, 能被x0+3整除,…, 能被x0+n﹣1整除,则称这个n位数是x0的一个“轮换数”.
例如:60能被5整除,06能被6整除,则称两位数60是5的一个“轮换数”;
再如:324能被2整除,243能被3整除,432能被4整除,则称三位数324是2的一个“轮换数”.
(1)若一个两位自然数的个位数字是十位数字的2倍,求证这个两位自然数一定是“轮换数”.
(2)若三位自然数是3的一个“轮换数”,其中a=2,求这个三位自然数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】把所有正奇数从小到大排列,并按如下规律分组:(1),(3,5,7),(9,11,13,15,17),(19,21,23,25,27,29,31),…现有等式Am=(i,j)表示正奇数m是第i组第j个数(从左往右数),如A7=(2,3),则A2019=( )
A.(31,47)B.(31,48)C.(32,48)D.(32,49)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于每个正整数 n,关于 x 的一元二次方程 0 的两个根分别为 an、bn,设平面直角坐标系中,An、Bn 两点的坐标分别为 An(an,0),Bn(bn,0),AnBn 表示这两点间的距离,则 AnBn=____________(用含 n 的代数式表示);A1B1+ A2B2+ …+ A2011B2012 的值为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将一矩形纸片OABC 放在平面直角坐标系中, O(0,0) , A(6,0) , C(0,3) .动点Q 从点O 出发以每秒 1 个单位长的速度沿OC 向终点C 运动,运动秒时,动点 P 从点A 出发以相等的速度沿 AO 向终点O 运动。当其中一点到达终点时,另一点也停止运动。设点 P 的运动时间为t (秒).
(1)用含t 的代数式表示OP,OQ ;
(2)当t 1时,如图 1,将△OPQ 沿 PQ 翻折,点O 恰好落在CB 边上的点 D 处,求点 D 的坐标;
(3)连结 AC ,将△OPQ 沿 PQ 翻折,得到△EPQ ,如图 2.问: PQ 与 AC 能否平行? PE 与 AC 能否垂直?若能,求出相应的t 值;若不能,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点E在正方形ABCD的边AB上,连接DE,过点C作CF⊥DE于F,过点A作AG∥CF交DE于点G.
(1)求证:△DCF≌△ADG.
(2)若点E是AB的中点,设∠DCF=α,求sinα的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,如果 A1、A2、A3、A4 把圆周四等分,则以A1、A2、A3、A4为顶点的直角三角形4个;如图②,如果A1、A2、A3、A4、A5、A6 把圆周六等分,则以A1、A2、A3、A4、A5、A6 为点的直角三角形有 12 个;如果 A1、A2、A3、……A2n 把圆周 2n 等分,则以 A1、A2、A3、…A2n为顶点的直角三角形有__________个,
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com