【题目】如图,在中,设的对边分别为,过点作,垂足为,会有,则
,即
同理,
通过推理还可以得到另一个表达三角形边角关系的定理—余弦定理:
在中,若的对边分别为,则
用上面的三角形面积公式和余弦定理解决问题:
(1)如图,在中,,的对边分别是3和8.
求和.
解:_______________;
______________.
(2)在中,已知,分别是以为边长的等边三角形,设的面积分别为,求证: .
【答案】(1)6,49;(2)见解析.
【解析】
试题分析:(1)直接利用正弦定理和余弦定理即可得出结论;
(2)方法1、利用正弦定理得出三角形的面积公式,再利用等边三角形的性质即可得出结论;
方法2、先用正弦定理得出S1,S2,S3,S4,最后用余弦定理即可得出结论.
试题解析:(1)在△DEF中,∠F=60°,∠D、∠E的对边分别是3和8,
∴EF=3,DF=8,
∴S△DEF=EF×DFsin∠F=×3×8×sin60°=6,
DE2=EF2+DF2﹣2EF×DFcos∠F=32+82﹣2×3×8×cos60°=49,
故答案为:6,49;
(2)证明:方法1,∵∠ACB=60°,
∴AB2=AC2+BC2﹣2ACBCcos60°=AC2+BC2﹣ACBC,
两边同时乘以sin60°得,AB2sin60°=AC2sin60°+BC2sin60°﹣ACBCsin60°,
∵△ABC',△BCA',△ACB'是等边三角形,
∴S1=ACBCsin60°,S2=AB2sin60°,S3=BC2sin60°,S4=AC2sin60°,
∴S2=S4+S3﹣S1,∴S1+S2=S3+S4,
方法2、令∠A,∠B,∠C的对边分别为a,b,c,
∴S1=absin∠C=absin60°=ab
∵△ABC',△BCA',△ACB'是等边三角形,
∴S2=ccsin60°=c2,S3=aasin60°=a2,S4=bbsin60°=b2,
∴S1+S2=(ab+c2),S3+S4=(a2+b2),
∵c2=a2+b2﹣2abcos∠C=a2+b2﹣2abcos60°,
∴a2+b2=c2+ab,∴S1+S2=S3+S4.
科目:初中数学 来源: 题型:
【题目】如图,在等腰Rt△ABC中,∠C=90°,D是斜边上AB上任一点,AE⊥CD于E , BF⊥CD交CD的延长线于F , CH⊥AB于H点,交AE于G .
(1)试说明AH=BH
(2)求证:BD=CG .
(3)探索AE与EF、BF之间的数量关系
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=3,BC=4,将矩形ABCD绕点C按顺时针方向旋转α角,得到矩形A'B'C'D',B'C与AD交于点E,AD的延长线与A'D'交于点F.
(1)如图①,当α=60°时,连接DD',求DD'和A'F的长;
(2)如图②,当矩形A'B'CD'的顶点A'落在CD的延长线上时,求EF的长;
(3)如图③,当AE=EF时,连接AC,CF,求ACCF的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了增强中学生的体质,某校食堂每天都为学生提供一定数量的水果,学校李老师为了了解学生喜欢吃哪种水果,进行了抽样调查,调查分为五种类型:A喜欢吃苹果的学生;B喜欢吃桔子的学生;C.喜欢吃梨的学生;D.喜欢吃香蕉的学生;E喜欢吃西瓜的学生,并将调查结果绘制成图1和图2 的统计图(不完整).请根据图中提供的数据解答下列问题:
(1)求此次抽查的学生人数;
(2)将图2补充完整,并求图1中的;
(3)现有5名学生,其中A类型2名,B类型2名,从中任选2名学生参加很体能测试,求这两名学生为同一类型的概率(用列表法或树状图法)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两个同学在四次模拟试中,数学的平均成绩都是112分,方差分别是S甲2=5,S乙2=12,则成绩比较稳定的是( )
A.甲
B.乙
C.甲和乙一样
D.无法确定
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com