精英家教网 > 初中数学 > 题目详情

【题目】二次函数的图象如图所示,下列结论:,其中正确结论的是  

A. B. C. D.

【答案】C

【解析】

利用图象信息以及二次函数的性质一一判断即可;

解:∵抛物线开口向下,

a0

∵对称轴x=﹣1

b0

∵抛物线交y轴于正半轴,

c0

abc0,故正确,

∵抛物线与x轴有两个交点,

b24ac0,故错误,

x=﹣2时,y0

4a2b+c0

4a+c2b,故正确,

x=﹣1时,y0x1时,y0

ab+c0a+b+c0

(ab+c) (a+b+c)0

,故错误,

x=﹣1时,y取得最大值ab+c

ax2+bx+cab+c

xax+bab,故正确.

故选:C

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,EF是正方形ABCD对角线AC上的两点,且,连接BEDEBFDF

求证:四边形BEDF是菱形:

的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AD平分∠BAC,AB=AC,连接BC,交AD于点E,下列说法正确的有(  )

①∠BAC=∠ACB;②S四边形ABDC=ADCE;③AB2+CD2=AC2+BD2;④AB﹣BD=AC﹣CD.

A. 1个 B. 2个 C. 3个 D. 4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某旅行社推出一条成本价为500元/人的省内旅游线路.游客人数(人/月)与旅游报价(元/人)之间的关系为,已知:旅游主管部门规定该旅游线路报价在800元/人~1200元/人之间.

(1)要将该旅游线路每月游客人数控制在200人以内,求该旅游线路报价的取值范围;

(2)求经营这条旅游线路每月所需要的最低成本;

(3)当这条旅游线路的旅游报价为多少时,可获得最大利润?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.

(1)求出y与x的函数关系式;

(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?

(3)设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在足够大的空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,其中AD≤MN,已知矩形菜园的一边靠墙,另三边一共用了100米木栏.

(1)若a=20,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD的长;

(2)求矩形菜园ABCD面积的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,矩形OABC的边OAy轴的正半轴上,Cx轴的正半轴上,已知A(0,8)、C(10,0),作∠AOC的平分线交AB于点D,连接CD,过点DDECDOA于点E

(1)求点D的坐标;

(2)求证:△ADE≌△BCD

(3)抛物线yx2x+8经过点AC,连接AC.探索:若点Px轴下方抛物线上一动点,过点P作平行于y轴的直线交AC于点M.是否存在点P,使线段MP的长度有最大值?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】要使关于x的方程有两个实数根,且使关于x的分式方程的解为非负数的所有整数a的个数为  

A. 3B. 4C. 5D. 6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=的图象与x轴交于点A和点B,以AB为边在x轴下方作正方形ABCD,点Px轴上一动点,连接DP,过点PDP的垂线与y轴交于点E

1)求出m的值并求出点A、点B的坐标.

2)当点P在线段AO(点P不与AO重合)上运动至何处时,线段OE的长有最大值,求出这个最大值;

3)是否存在这样的点P,使△PED是等腰三角形?若存在,请求出点P的坐标及此时△PED与正方形ABCD重叠部分的面积;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案