精英家教网 > 初中数学 > 题目详情

【题目】如图,直线y=x+3与两坐标轴交于A、B两点,抛物线y=﹣x2+bx+c过A、B两点,且交x轴的正半轴于点C.

(1)求A、B两点的坐标;

(2)求抛物线的解析式和点C的坐标.

【答案】(1)点A的坐标为(﹣3,0);(2)点C的坐标为(1,0).

【解析】

(1)分别令x=0y=0代入y=x+3中可得结论;
(2)利用待定系数法求二次函数的解析式,令y=0即可求出点C的坐标.

(1)当x=0时,y=x+3=3,

∴点B的坐标为(0,3);

y=0时,有x+3=0,

解得:x=﹣3,

∴点A的坐标为(﹣3,0).

(2)将A(﹣3,0),B(0,3)代入y=﹣x2+bx+c,得:

,解得:

∴抛物线的解析式为y=﹣x2﹣2x+3.

y=0时,有﹣x2﹣2x+3=0,

解得:x1=﹣3,x2=1,

∴点C的坐标为(1,0).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】列方程解应用题:

为宣传社会主义核心价值观,某社区居委会计划制作1200个大小相同的宣传栏.现有甲、乙两个广告公司都具备制作能力,居委会派出相关人员分别到这两个广告公司了解情况,获得如下信息:

信息一:甲公司单独制作完成这批宣传栏比乙公司单独制作完成这批宣传栏多用10天;

信息二:乙公司每天制作的数量是甲公司每天制作数量的1.2倍.

根据以上信息,求甲、乙两个广告公司每天分别能制作多少个宣传栏?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知A(﹣4,),B(﹣1,m)是一次函数y=kx+b与反比例函数y=图象的两个交点,AC⊥x轴于点C,BD⊥y轴于点D.

(1)求m的值及一次函数解析式;

(2)P是线段AB上的一点,连接PC、PD,若△PCA△PDB面积相等,求点P坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图的ABC中,ABACBC,且DBC上一点。现打算在AB上找一点P,在AC上找一点Q,使得APQ与以PDQ为顶点的三角形全等,以下是甲、乙两人的作法:

甲:连接AD,作AD的中垂线分别交ABACP点、Q点,则PQ两点即为所求;

乙:过D作与AC平行的直线交ABP点,过D作与AB平行的直线交ACQ点,则PQ两点即为所求;

对于甲、乙两人的作法,下列判断何者正确(  )?

A.两人皆正确B.两人皆错误C.甲正确,乙错误D.甲错误,乙正确

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线的图象如图所示,则下列结论:;②;③;④.其中正确的结论是(

A. ①② B. ②③ C. ③④ D. ②④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知中,.

1)如图1,在中,,连接,若,求证:

2)如图2,在中,,连接,若于点,求的长;

3)如图3,在中,,连接,若,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线经过点A(-1,0),B4,0C0,2)三点,点D与点C关于x轴对称,点Px轴上的一个动点,设点P的坐标为(m0),过点Px轴的垂线交抛物线于点Q,交直线BD于点M

1)求该抛物线所表示的二次函数的表达式;

2)已知点F0),当点Px轴上运动时,试求m为何值时,四边形DMQF是平行四边形?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则以下结论同时成立的是(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为抵御百年不遇的洪水,某市政府决定将长的大堤的迎水坡面铺石加固,堤高,堤面加宽,则完成这一工程需要的石方数为________

查看答案和解析>>

同步练习册答案