【题目】如图,已知抛物线y=﹣x2﹣x+2与x轴交于A、B两点,与y轴交于点C
(1)求点A,B,C的坐标;
(2)点E是此抛物线上的点,点F是其对称轴上的点,求以A,B,E,F为顶点的平行四边形的面积;
(3)此抛物线的对称轴上是否存在点M,使得△ACM是等腰三角形?若存在,请求出点M的坐标;若不存在,请说明理由.
【答案】(1)点A坐标(2,0),点B坐标(﹣4,0),点C坐标(0,2);(2);(3)M坐标为(﹣1,﹣1)或(﹣1,2+)或(﹣1.2﹣).
【解析】
试题分析:(1)分别令y=0,x=0,解方程后即可得点A,B,C的坐标;(2)分AB为平行四边形的边和对角线两种情况求解决可;(3)分A、C、M为顶点三种情形讨论,分别求解即可解决问题.
试题解析:(1)令y=0得﹣x2﹣x+2=0,
∴x2+2x﹣8=0,
x=﹣4或2,
∴点A坐标(2,0),点B坐标(﹣4,0),
令x=0,得y=2,∴点C坐标(0,2).
(2)当AB为平行四边形的边,
∵AB=EF=6,对称轴x=﹣1,
∴点E的横坐标为﹣7或5,
∴点E坐标(﹣7,﹣)或(5,﹣),此时点F(﹣1,﹣),
∴以A,B,E,F为顶点的平行四边形的面积=6×=.
当AB为平行四边形的对角线时,点F为抛物线的顶点,即F(-1,),所以点E的坐标为(-1,-),
∴以A,B,E,F为顶点的平行四边形的面积=.
(3)如图所示,①当C为顶点时,CM1=CA,CM2=CA,作M1N⊥OC于N,
在RT△CM1N中,CN==,
∴点M1坐标(﹣1,2+),点M2坐标(﹣1,2﹣).
②当M3为顶点时,∵直线AC解析式为y=﹣x+1,
线段AC的垂直平分线为y=x,
∴点M3坐标为(﹣1,﹣1).
③当点A为顶点的等腰三角形不存在.
综上所述点M坐标为(﹣1,﹣1)或(﹣1,2+)或(﹣1.2﹣).
科目:初中数学 来源: 题型:
【题目】下列算式中,错误的有( )
①x2+x2=x4;②4a2b-3a2b=1;③2a+3b=5ab;④x-2(x-2)=-x-4.
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲乙两人加工同一种玩具,甲加工90个玩具所用的时间与乙加工120个玩具所用的时间相等,已知甲乙两人每天共加工35个玩具,设甲每天加工x个玩具:
(1)乙每天加工 个玩具(用含x的代数式表示);
(2)求甲乙两人每天各加工多少个玩具?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若(3x2-3x+2)-(-x2+3x-3)=Ax2-Bx+C,则A、B、C的值分别为( )
A. 4、-6、5 B. 4、0、-1
C. 2、0、5 D. 4、6、5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】自驾游是当今社会一种重要的旅游方式,五一放假期间小明一家人自驾去灵山游玩,下图描述了小明爸爸驾驶的汽车在一段时间内路程s(千米)与时间t(小时)的函数关系,下列说法中正确的是( )
A. 汽车在0~1小时的速度是60千米/时; B. 汽车在2~3小时的速度比0~0.5小时的速度快;
C. 汽车从0.5小时到1.5小时的速度是80千米/时; D. 汽车行驶的平均速度为60千米/时.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知数轴上三点A,O,B对应的数分别为﹣5,0,1,点M为数轴上任意一点,其对应的数为x.
请回答问题:
(1)A、B两点间的距离是_____,若点M到点A、点B的距离相等,那么x的值是_____;
(2)若点A先沿着数轴向右移动6个单位长度,再向左移动4个单位长度后所对应的数字是 ____ ;
(3)当x为何值时,点M到点A、点B的距离之和是8;
(4)如果点M以每秒3个单位长度的速度从点O向左运动时,点A和点B分别以每秒1个单位长度和每秒4个单位长度的速度也向左运动,且三点同时出发,那么几秒种后点M运动到点A、点B之间,且点M到点A、点B的距离相等?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com