精英家教网 > 初中数学 > 题目详情

【题目】如图,在中,.动点以每秒个单位的速度从点开始向点移动,直线从与重合的位置开始,以相同的速度沿方向平行移动,且分别与边交于两点,点与直线同时出发,设运动的时间为秒,当点移动到与点重合时,点和直线同时停止运动.在移动过程中,将绕点逆时针旋转,使得点的对应点落在直线上,点的对应点记为点,连接,当时,的值为___________.

【答案】

【解析】

由题意得CP=10-3tEC=3t,BE=16-3t,又EF//AC可得△ABC∽△FEB,进而求得EF的长;如图,由点P的对应点M落在EF上,点F的对应点为点N,可知∠PEF=MEN,由EF//ACC=90°可以得出∠PEC=∠NEG,又由,就有∠CBN=CEP.可以得出∠CEP=NEP=B,NNGBC,可得EN=BN,最后利用三角函数的关系建立方程求解即可;

解:设运动的时间为秒时

由题意得:CP=10-3tEC=3t,BE=16-3t

EF//AC

∴△ABC∽△FEB

∴EF=

RtPCE中,PE=

如图:过NNGBC,垂足为G

∵将绕点逆时针旋转,使得点的对应点落在直线上,点的对应点记为点

∴∠PEF=MENEF=EN,

∵EF//AC

∴∠C=CEF=MEB=90°

∴∠PEC=∠NEG

又∵

∴∠CBN=CEP.

∴∠CBN=NEG

∵NGBC

NB=EN,BG=

∴NB=EN=EF=

∵∠CBN=NEG,∠C=NGB=90°

∴△PCE∽△NGB

=,解得t=-(舍)

故答案为.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】重庆渴乐自驾游公司在元旦节推出四条自驾线路,为调查客户对各条线路的喜欢情况,微信群里做了一次我最期待的自驾线路问卷调查(群里每个人都进行了调查且只选择一条线路),统计后发现选湘西的人数比选毕棚沟的少6人;选邛海的人数不仅比选毕棚沟的多,且为整数倍:选毕棚沟与邛海的人数之和是选择湘西和北海的人数之和的4倍;选北海和邛海的人数之和比选湘西与毕棚沟的人数之和多22人,则该微信群里参与调查的共_____人.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直角梯形ABCD中,∠ADC90°ADBC,点EBC上,点FAC上,∠DFC=∠AEB

1)求证:△ADF∽△CAE

2)当AD8DC6,点EF分别是BCAC的中点时,求BC的长?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题的提出:

如果点P是锐角ABC内一动点,如何确定一个位置,使点PABC的三顶点的距离之和PA+PB+PC的值为最小?

问题的转化:

(1)ΔAPC绕点A逆时针旋转60度得到连接这样就把确定PA+PB+PC的最小值的问题转化成确定的最小值的问题了,请你利用如图证明:

问题的解决:

(2)当点P到锐角ABC的三项点的距离之和PA+PB+PC的值为最小时,请你用一定的数量关系刻画此时的点P的位置:_____________________________

问题的延伸:

(3)如图是有一个锐角为30°的直角三角形,如果斜边为2,点P是这个三角形内一动点,请你利用以上方法,求点P到这个三角形各顶点的距离之和的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=﹣x+1x轴,y轴分别交于AB两点,抛物线yax2+bx+c过点B,并且顶点D的坐标为(﹣2,﹣1).

1)求该抛物线的解析式;

2)若抛物线与直线AB的另一个交点为F,点C是线段BF的中点,过点CBF的垂线交抛物线于点PQ,求线段PQ的长度;

3)在(2)的条件下,点M是直线AB上一点,点N是线段PQ的中点,若PQ2MN,直接写出点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中, 边上一点,连接,以为边作等边.

如图1,若求等边的边长;

如图2,点边上移动过程中,连接,取的中点,连接,过点于点.

①求证:

②如图3,将沿翻折得,连接,直接写出的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)观察猜想:

RtABC中,∠BAC=90°,AB=AC,点D在边BC上,连接AD,把ABD绕点A逆时针旋转90°,点D落在点E处,如图①所示,则线段CE和线段BD的数量关系是   ,位置关系是   

(2)探究证明:

在(1)的条件下,若点D在线段BC的延长线上,请判断(1)中结论是还成立吗?请在图②中画出图形,并证明你的判断.

(3)拓展延伸:

如图③,∠BAC≠90°,若AB≠AC,∠ACB=45°AC=,其他条件不变,过点DDFADCE于点F,请直接写出线段CF长度的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点C在⊙O上,联结CO并延长交弦AB于点D, ,联结AC、OB,若CD=40,AC=20

(1)求弦AB的长;

(2)求sin∠ABO的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在平面直角坐标系中,抛物线与轴相交于点,点,与轴相交于点与抛物线的对称轴相交于点.

1)求该抛物线的表达式,并直接写出点的坐标;

2)过点交抛物线于点,求点的坐标;

3)在(2)的条件下,点在射线上,若相似,求点的坐标.

查看答案和解析>>

同步练习册答案