精英家教网 > 初中数学 > 题目详情

【题目】已知xy为有理数,现规定一种新运算“〇”满足xyy22x

1)求5〇(﹣3);

2)求(5x)﹣2yx),其中|x1|+y+240

【答案】(1)1;(2)﹣19

【解析】

1)根据新定义规定的运算法则计算可得;

2)利用新定义规定的运算化简原式,再由非负数的性质得出xy的值,代入计算可得.

解:(15〇(﹣3)=(﹣322×5

910

=﹣1

2)原式=x22×52x22y

x2102x2+4y

=﹣x2+4y10

|x1|+y+240

x1y=﹣2

则原式=﹣1810=﹣19

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某校有21名同学们参加某比赛,预赛成绩各不同,要取前11名参加决赛,小颖已经知道了自己的成绩,她想知道自己能否进入决赛,只需要再知道这21名同学成绩的(
A.最高分
B.中位数
C.极差
D.平均数

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场将一款空调按标价的八折出售,仍可获利10%,若该空调的进价为2000元,则标价元.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,经过点A的双曲线y=(x0)同时经过点B,且点A在点B的左侧,点A的横坐标为AOB=OBA=45°,则k的值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市为创建全国文明城市,开展“美化绿化城市”活动,计划经过若干年使城区绿化总面积新增360万平方米.自2013年初开始实施后,实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务.

(1)问实际每年绿化面积多少万平方米?

(2)为加大创城力度,市政府决定从2016年起加快绿化速度,要求不超过2年完成,那么实际平均每年绿化面积至少还要增加多少万平方米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】【操作发现】

(1)如图1,为等边三角形,先将三角板中的角与重合,再将三角板绕点按顺时针方向旋转(旋转角大于且小于).旋转后三角板的一直角边与交于点.在三角板斜边上取一点,使,线段上取点,使,连接.

的度数;

相等吗?请说明理由;

【类比探究】

(2)如图2,为等腰直角三角形,,先将三角板的角与重合,再将三角板绕点按顺时针方向旋转(旋转角大于且小于).旋转后三角板的一直角边与交于点.在三角板另一直角边上取一点,使,线段上取点,使,连接.请直接写出探究结果:

的度数;

线段之间的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】以下五个命题:①对顶角相等;②内错角相等;③同位角相等,两直线平行;④0的立方根是0;⑤无限不循环小数是无理数.其中真命题的个数为(
A.2
B.3
C.4
D.5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知函数(a是常数,a0),下列结论正确的是(

A.当a=1时,函数图象经过点(﹣1,1)

B.当a=﹣2时,函数图象与x轴没有交点

C.若a0,函数图象的顶点始终在x轴的下方

D.若a0,则当x1时,y随x的增大而增大

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】【感知】如图①,四边形ABCD、CEFG均为正方形.可知BE=DG. 【拓展】如图②,四边形ABCD、CEFG均为菱形,且∠A=∠F.求证:BE=DG.
【应用】如图③,四边形ABCD、CEFG均为菱形,点E在边AD上,点G在AD延长线上.若AE=2ED,∠A=∠F,△EBC的面积为8,则菱形CEFG的面积为

查看答案和解析>>

同步练习册答案