【题目】如图,已知,点在射线上,点…在射线上,、、…均为等边三角形,分别连接,连接….若,从左往右的阴影面积依次记作.则=______.
【答案】
【解析】
易证∠A1OB1=∠A1B1O=30°,从而可得B1A=OA1=a,同理可得A2B2=OA2=2a,B3A3=OA3=4a,…,从而归纳得到BnAn=2n-1a,即可得到S正△AnBnAn+1=BnAn2=4n-2a2.易证A1B1∥A2B2,从而可得△A1B1C1∽△B2A2C1,根据相似三角形的性质可得==,根据合比性质可得=,根据两个三角形高相等时面积比等于底的比可得S1=S△A1B1A2,同理可得Sn=S△AnBnAn+1,由此就可求出Sn.
∵△A1B1A2是等边三角形,∴∠B1A1A2=60°.
∵∠MON=30°,∴∠OB1A1=60°30°=30°,
∴∠A1OB1=∠A1B1O,∴B1A=OA1=a.
同理:A2B2=OA2=2a,B3A3=OA3=4a,…
BnAn=2n1a,
∴S正△AnBnAn+1=BnAn2= (2n1a)2.
=22n2a2=4n1a2=4n2a2
∵△A1B1A2、△A2B2A3为等边三角形,
∴∠B1A1A2=∠B2/span>A2A3=60°,
∴A1B1∥A2B2,
∴△A1B1C1∽△B2A2C1,
∴==,
∴=,
∴=,即S1=S△A1B1A2.
同理可得Sn=S△AnBnAn+1=4n2a2=
故答案为.
科目:初中数学 来源: 题型:
【题目】如图,平行四边形ABCD中,E,F分别为AD,BC边上的一点,增加下列条件,不能得出BE∥DF的是( )
A. AE=CF B. BE=DF C. ∠EBF=∠FDE D. ∠BED=∠BFD
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,,点为的中点,.将绕点顺时针旋转度,角的两边分别交直线于两点,设点间的距离为,两点间的距离为.
小涛根据学习函数的经验,对函数随自变量的变化而变化的规律进行了探究下面是小涛的探究过程,请补充完整.
(1)列表:下表的已知数据是根据两点间的距离进行取点、画图、测量,分别得到了 与 的几组对应值:
0 | 0.30 | 0.50 | 1.00 | 1.50 | 2.00 | 2.50 | 3.00 | 3.50 | 3.68 | 3.81 | 3.90 | 3.93 | 4.10 | ||
2.88 | 2.81 | 2.69 | 2.67 | 2.80 | 3.15 | 3.85 | 5.24 | 6.01 | 6.71 | 7.27 | 7.44 | 8.87 |
请你通过计算,补全表格
(2)描点、连线:在平面直角坐标系中,描出表中各组数值所对应的点,并画出函数关于的图象:
(3)探究性质:随着自变量的不断增大,函数的变化趋势:
(4)解决问题:当时,的长度大约是____ (保留两位小数).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABE中,∠B=90°,以AB为直径的⊙O交AE于点C,CE的垂直平分线FD交BE于D,连接CD.
(1)判断CD与⊙O的位置关系,并证明;
(2)若AC·AE=12,求⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,禁止捕鱼期间,某海上稽查队在某海域巡逻,上午某一时刻在A处接到指挥部通知,在他们东北方向距离12海里的B处有一艘捕鱼船,正在沿南偏东75°方向以每小时10海里的速度航行,稽查队员立即乘坐巡逻船以每小时14海里的速度沿北偏东某一方向出发,在C处成功拦截捕鱼船,求巡逻船从出发到成功拦截捕鱼船所用的时间.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为弘扬传统文化,某校开展了“传承经典文化,阅读经典名著”活动.为了解七、八年级学生(七、八年级各有600名学生)的阅读效果,该校举行了经典文化知识竞赛.现从两个年级各随机抽取20名学生的竞赛成绩(百分制)进行分析,过程如下:
收集数据:
七年级:79,85,73,80,75,76,87,70,75,94,75,79,81,71,75,80,86,59,83,77.
八年级:92,74,87,82,72,81,94,83,77,83,80,81,71,81,72,77,82,80,70,41.
整理数据:
七年级 | 0 | 1 | 0 | a | 7 | 1 |
八年级 | 1 | 0 | 0 | 7 | b | 2 |
分析数据:
平均数 | 众数 | 中位数 | |
七年级 | 78 | 75 | |
八年级 | 78 | 80.5 |
应用数据:
(1)由上表填空:a= ,b= ,c= ,d= .
(2)估计该校七、八两个年级学生在本次竞赛中成绩在90分以上的共有多少人?
(3)你认为哪个年级的学生对经典文化知识掌握的总体水平较好,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了解家长关注孩子成长方面的状况,某学校开展了针对家长的“您最关心孩子哪方面的成长”的主题调查,调查设置了“健康安全”,“日常学习”,“习惯养成”,“情感品质”四个项目,并随机抽取了部分家长进行调查,要求家长只能选择其中一个项目,根据调查结果绘制了如下两幅不完整的统计图.
(1)本次调查共抽取了多少名学生家长?
(2)通过计算补全条形统计图;
(3)若全校共有2000名学生家长,估计有多少位学生家长最关心孩子“情感品质”方面的成长?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形网络中,△ABC的三个顶点都在格点上,点A、B、C的坐标分别为(-2,4)、(-2,0)、(-4,1),结合所给的平面直角坐标系解答下列问题:
(1)画出△ABC关于原点O对称的△A1B1C1.
(2)平移△ABC,使点A移动到点A2(0,2),画出平移后的△A2B2C2并写出点B2、C2的坐标.
(3)在△ABC、△A1B1C1、△A2B2C2中,△A2B2C2与 成中心对称,其对称中心的坐标为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的边长为2,点E是BC的中点,AE与BD交于点P,F是CD上的一点,连接AF分别交BD,DE于点M,N,且AF⊥DE,连接PN,则下列结论中:
①;②;③tan∠EAF=;④正确的是()
A. ①②③B. ①②④C. ①③④D. ②③④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com