精英家教网 > 初中数学 > 题目详情

【题目】9分)如图,在平面直角坐标系中,点A1)、B20)、O00),反比例函数y=图象经过点A

1)求k的值;

2)将△AOB绕点O逆时针旋转60°,得到△COD,其中点A与点C对应,试判断点D是否在该反比例函数的图象上?

【答案】1;(2D1)在反比例函数y=的图象上

【解析】试题(1)根据待定系数法,直接代入点的坐标即可求得k

2)根据旋转的性质可求出D点的坐标,再代入解析式可确定.

试题解析:解:(1函数y=的图象过点A1),

k=xy=×1=

2∵B20),

∴OB=2

∵△AOB绕点O逆时针旋转60°得到△COD

∴OD=OB=2∠BOD=60°

如图,过点DDE⊥x轴于点E

DE=OEsin60°=2×=

OE=ODcos60°=2×=1

D1),

由(1)可知y=

x=1时,y==

D1)在反比例函数y=的图象上.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图矩形ABCDAB=2ADA01),CD在反比例函数k0)的图象上ABx轴的正半轴相交于点EEAB的中点k的值为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】关于的方程有两个不相等的实数根.

求实数的取值范围;

是否存在实数,使方程的两个实数根之和等于两实数根之积的算术平方根?若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数y=﹣x2+bx+c的图象经过A(2,0),B(0,﹣6)两点

(1)求这个二次函数的解析式;

(2)设该二次函数的对称轴与x轴交于点C,连接BA,BC,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读材料:()如果我们能找到两个实数xy使,这样,那么我们就称和谐二次根式,则上述过程就称之为化简和谐二次根式”.

例如:.

()在进行二次根式的化简与运算时,我们有时还会碰上如一样的式子,其实我们还可以将其进一步化简:,那么我们称这个过程为分式的分母有理化.

根据阅读材料解决下列问题:

(1)化简和谐二次根式:①___________,②___________

(2)已知,求的值;

(3)的小数部分为,求证:.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将平行四边形ABCD绕点A逆时针旋转40°,得到平行四边形AB′C′D′,若点B′恰好落在BC边上,则∠DC′B′的度数为(

A. 60° B. 65° C. 70° D. 75°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知:关于x的二次函数的图象与x轴交于点A(1,0)和点B,与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D.

(1)求二次函数的表达式;

(2)y轴上是否存在一点P,使PBC为等腰三角形.若存在,请求出点P的坐标;

(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M 达点B时,点MN同时停止运动,问点MN运动到何处时,MNB面积最大,试求出最大面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,BE=CF,AB∥DE,添加下列哪个条件不能证明△ABC≌△DEF的是( )

A. AB=DE B. ∠A=D C. AC=DF D. AC∥DF

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线经过A﹣10),B50),C0)三点.

1)求抛物线的解析式;

2)在抛物线的对称轴上有一点P,使PA+PC的值最小,求点P的坐标;

3)点Mx轴上一动点,在抛物线上是否存在一点N,使以ACMN四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案