精英家教网 > 初中数学 > 题目详情

【题目】如图,将平行四边形ABCD绕点A逆时针旋转40°,得到平行四边形AB′C′D′,若点B′恰好落在BC边上,则∠DC′B′的度数为(

A. 60° B. 65° C. 70° D. 75°

【答案】C

【解析】

先根据旋转得出ABB'是等腰三角形,再根据旋转的性质以及平行四边形的性质,判定三角形AOB'DOC'都是等腰三角形,最后根据∠DOC'的度数,求得∠DC'B'的度数.

由旋转得,∠BAB'=40°,AB=AB',B=AB'C',

∴∠B=AB'B=AB'C'=70°,

ADBC,

∴∠DAB'=AB'C'=70°,

AO=B'O,AOB=DOC'=40°,

又∵AD=B'C',

OD=OC',

∴△ODC'中,∠DC'O=.

故选:C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,点O是直线AB上的一点,∠COD是直角,OE平分∠BOC.

(1)如图,若∠AOC=40°,求∠DOE的度数;

(2)如图,若∠AOC=α,直接写出∠DOE的度数(用含α的代数式表示)

(3)将图中的∠COD绕顶点O顺时针旋转至图的位置,OE平分∠BOC.

探究∠AOC∠DOE的度数之间的关系,写出你的结论,并说明理由;

∠AOC的内部有一条射线OF,且∠AOC﹣3∠AOF=2∠BOE,试确定∠AOF∠DOE的度数之间的关系,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了备战初三物理、化学实验操作考试,某校对初三学生进行了模拟训练,物理、化学各有4各不同的操作实验题目,物理用番号①、②、③、④代表,化学用字母a、b、c、d表示,测试时每名学生每科只操作一个实验,实验的题目由学生抽签确定,第一次抽签确定物理实验题目,第二次抽签确定化学实验题目.
(1)请用树形图法或列表法,表示某个同学抽签的各种可能情况.
(2)小张同学对物理的①、②和化学的b、c号实验准备得较好,他同时抽到两科都准备的较好的实验题目的概率是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,由相同边长的小正方形组成的网格图形,ABC都在格点上,利用网格画图:(注:所画线条用黑色签字笔描黑

1)过点CAB的平行线;

2)过点BAC的垂线,垂足为点G;过点BAB的垂线,交AC的延长线于H

3)点BAC的距离是线段 的长度,线段AB的长度是点 到直线

的距离.

4)线段BGAB的大小关系为:BG AB填“>”、“<”或“=”,理由是 .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】先阅读,再解决问题,例题:若m2+2mn+2n2﹣6n+9=0,求mn的值.

解:∵m2+2mn+2n2﹣6n+9=0

∴(m+n)2+(n﹣3)2=0

∴m+n=0,n﹣3=0

∴n=3,m=﹣3

(1)x2+2y2﹣2xy+4y+4=0,求xy的值

(2)已知△ABC的三边长a,b,c都是正整数,且满足a2+b2﹣6a﹣6b+18+|3﹣c|=0,请问△ABC是怎样形状的三角形?

(3)根据以上的方法是说明代数式:x2+4x+y2﹣8y+21的值一定是一个正数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)比较大小;

①|﹣2|+|3|   |﹣2+3|;

②|4|+|3|   |4+3|;

③|﹣|+|﹣|   |﹣+(﹣)|;

④|﹣5|+|0|   |﹣5+0|.

(2)通过(1)中的大小比较,猜想并归纳出|a|+|b|与|a+b|的大小关系,并说明a,b满足什么关系时,|a|+|b|=|a+b|成立?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】仔细观察下面由组成的图案和算式,解答问题:

1+3=4=22

1+3+5=9=32

1+3+5+7=16=42

1+3+5+7+9=25=52

(1)请计算:

1+3+5+7+9+ … +19=

(2)请猜想:

1+3+5+7+9+ … +(2n-1)+(2n+1)+(2n+3)=

(3)请用上述规律计算:

103+105+107+ … +2013+2015

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图 1,∠AOC=∠BOD=90°.

(1)如果DOC=28°,那么AOB 的度数是多少?

(2)∠AOD BOC(填“>”、“=”“<”),理由是

(3)在图2 中利用能够画直角的工具再画一个与COB 相等的角.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,AB=3,BC=4,点E是线段CB上的异于B、C的动点,AF⊥AE交线段CD的延长线于点F,EF与AD交于点M.

(1)求证:△ABE∽△ADF;
(2)若AE⊥BD,求BE长;
(3)若△AEM是以AE为腰的等腰三角形,求BE的长.

查看答案和解析>>

同步练习册答案