精英家教网 > 初中数学 > 题目详情

【题目】如图,已知RtABC中,∠ACB=90°,∠B=15°,边AB的垂直平分线交边BC于点E,垂足为点D,取线段BE的中点F,联结DF.求证:AC=DF.(说明:此题的证明过程需要批注理由)

【答案】见解析

【解析】

先根据线段垂直平分线的性质得:AE=BE,再利用直角三角形斜边中线的性质得:DFBE的关系,最后根据直角三角形30度的性质得ACAE的关系,从而得出结论.

连接AE,

DEAB的垂直平分线(已知),

AE=BE,EDB=90°(线段垂直平分线的性质),

∴∠EAB=EBA=15°(等边对等角),

∴∠AEC=30°(三角形的一个外角等于与它不相邻的两个内角的和),

RtEDB中,∵FBE的中点(已知),

DF=BE(直角三角形斜边中线等于斜边的一半),

RtACE中,∵∠AEC=30°(已知),

AC=AE(直角三角形30°角所对的直角边是斜边的一半),

AC=DF(等量代换).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知AD∥BC,AB⊥BC,AB=3,点E为射线BC上一个动点,连接AE,将△ABE沿AE折叠,点B落在点B′处,过点B′作AD的垂线,分别交AD,BC于点M,N.当点B′为线段MN的三等分点时,BE的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,RtABC中,∠ACB=90°,AB的垂直平分线DEBC的延长线于F,若∠F=30°,DE=1,EF的长是_____.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】△ABC中,AB=AC,点D、E、F分别在BC、AB、AC上,∠EDF=∠B.
(1)如图1,

求证:DECD=DFBE
(2)D为BC中点如图2,

连接EF.
①求证:ED平分∠BEF;
②若四边形AEDF为菱形,求∠BAC的度数及 的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,已知点C(1,0),直线y=﹣x+7与两坐标轴分别交于A,B两点,D,E分别是AB,OA上的动点,则△CDE周长的最小值是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图(1),已知四边形ABCD的四条边相等,四个内角都等于90°,点E是CD边上一点,F是BC边上一点,且∠EAF=45°.

(1)求证:BF+DE=EF;

(2)若AB=6,设BF=x,DE=y,求y关于x的函数解析式,并写出x的取值范围;

(3)过点A作AHFE于点H,如图(2),当FH=2,EH=1时,求AFE的面积.

 

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB=DB,∠1=∠2,请问添加下面哪个条件不能判断△ABC≌△DBE的是(  )

A. BC=BE B. ∠A=∠D C. ∠ACB=∠DEB D. AC=DE

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一次函数y=ax+b(a≠0)与二次函数ax2+2x+b(a≠0)在同一直角坐标系中的图象可能是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=ax+b的图象与反比例函数y= 的图象交于A(﹣2,m),B(4,﹣2)两点,与x轴交于C点,过A作AD⊥x轴于D.
(1)求这两个函数的解析式:
(2)求△ADC的面积.

查看答案和解析>>

同步练习册答案