精英家教网 > 初中数学 > 题目详情

【题目】2018年秋,珊瑚中学开启“珊中大阅读”活动,为了充实漂流书吧藏书,号召全校学生捐书,得到各班的大力支持.同时,本部校区的两个年级组也购买藏书充实学校图书室,初二年级组购买了甲、乙两种自然科学书籍若干本,用去8315;初一年级买了A、B两种文学书籍若干本,用去6138元。其中A、B的数量分别与甲、乙的数量相等,且甲种书与B种书的单价相同,乙种书与A种书的单价相同.若甲种书的单价比乙种书的单价多7,则甲种书籍比乙种书籍多买了_____________.

【答案】311

【解析】

根据已知条件设出甲乙的单价和数量,根据甲乙一共用去8315, A、B一共用去6138元组成方程组,整理方程组即可解题.

设乙的单价为x元/本则甲为(7+x)元/本,甲购买了a本,乙买了b本,

∴A的单价为x元/本,B为(7+x)元/本, A购买了a本,B买了b本,

依题意得

①-②:7a-7b=2177,

∴a-b=311,

即甲种书籍比乙种书籍多买了311本.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,对“隔离直线”给出如下定义:
点P(x,m)是图形G1上的任意一点,点Q(x,n)是图形G2上的任意一点,若存在直线l:kx+b(k≠0)满足m≤kx+b且n≥kx+b,则称直线l:y=kx+b(k≠0)是图形G1与G2的“隔离直线”.
如图1,直线l:y=﹣x﹣4是函数y= (x<0)的图象与正方形OABC的一条“隔离直线”.

(1)在直线y1=﹣2x,y2=3x+1,y3=﹣x+3中,是图1函数y= (x<0)的图象与正方形OABC的“隔离直线”的为
请你再写出一条符合题意的不同的“隔离直线”的表达式:
(2)如图2,第一象限的等腰直角三角形EDF的两腰分别与坐标轴平行,直角顶点D的坐标是( ,1),⊙O的半径为2.是否存在△EDF与⊙O的“隔离直线”?若存在,求出此“隔离直线”的表达式;若不存在,请说明理由;

(3)正方形A1B1C1D1的一边在y轴上,其它三边都在y轴的右侧,点M(1,t)是此正方形的中心.若存在直线y=2x+b是函数y=x2﹣2x﹣3(0≤x≤4)的图象与正方形A1B1C1D1的“隔离直线”,请直接写出t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在下列条件中,不能作为判断ABD≌△BAC的条件是( )

A. D=C,BAD=ABC B. BAD=ABC,ABD=BAC

C. BD=AC,BAD=ABC D. AD=BC,BD=AC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,我们定义点P(a,b)的“变换点”为Q.且规定:当a≥b时,Q为(b,﹣a);当a<b时,Q为(a,﹣b).
(1)点(2,1)的变换点坐标为
(2)若点A(a,﹣2)的变换点在函数y= 的图象上,求a的值;
(3)已知直线l与坐标轴交于(6,0),(0,3)两点.将直线l上所有点的变换点组成一个新的图形记作M. 判断抛物线y=x2+c与图形M的交点个数,以及相应的c的取值范围,请直接写出结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校合唱团有30名成员,下表是合唱团成员的年龄分布统计表:

年龄(单位:岁)

13

14

15

16

频数(单位:名)

5

15

x

10﹣x

对于不同的x,下列关于年龄的统计量不会发生改变的是( )
A.平均数、中位数
B.平均数、方差
C.众数、中位数
D.众数、方差

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:( 1﹣(2﹣ 0﹣2sin60°+| ﹣2|

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线l1:y=﹣3x+3y轴于C,与x轴交于点D,直线l2经过点A(4,0),且直线l1、l2交于点B(2,m).

(1)求m的值和直线l2的函数表达式;

(2)直线l2在第一象限内的部分上有一点E,且△ADE的面积是△ADB面积的一半,求出点E的坐标,并在x轴上找一点P,使得CP+PE的值最小,求出这个最小值;

(3)若点Qy轴上一点,且△BDQ为等腰三角形,请直接写出Q的坐标;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC 为等边三角形,DE 分别是边 ACBC 上的点,且ADCEAE BD 相交于点 P.

(1)求∠BPE 的度数;

(2)若 BFAE 于点 F,试判断 BP PF 的数量关系并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,∠A=30°∠B=62°CE平分∠ACBCD⊥ABDDF⊥CEF,求∠CDF的度数.

查看答案和解析>>

同步练习册答案