| A. | ($\sqrt{2}$)2013 | B. | ($\sqrt{2}$)2014 | C. | ($\sqrt{2}$)2015 | D. | ($\sqrt{2}$)2016 |
分析 根据点M0的坐标求出OM0,然后判断出△OM0M1是等腰直角三角形,然后根据等腰直角三角形的性质求出OM1,同理求出OM2,OM3,然后根据规律写出OM2014即可.
解答 解:∵点M0的坐标为(1,0),
∴OM0=1,
∵线段OM0绕原点O逆时针方向旋转45°,M1M0⊥OM0,
∴△OM0M1是等腰直角三角形,
∴OM1=$\sqrt{2}$OM0=$\sqrt{2}$,
同理,OM2=$\sqrt{2}$OM1=($\sqrt{2}$)2,
OM3=$\sqrt{2}$OM2=($\sqrt{2}$)3,
…,
OM2014=$\sqrt{2}$OM2013=($\sqrt{2}$)2014.
故选B.
点评 本题是对点的坐标变化规律的考查,主要利用了等腰直角三角形的判定与性质,读懂题目信息,判断出等腰直角三角形是解题的关键.
科目:初中数学 来源: 题型:选择题
| A. | 6a2b=2•3•a•a•b | B. | x2-2x+1=x(x-2)+1 | ||
| C. | a2-b2=(a+b)(a-b) | D. | ax+ay+bx+by=a(x+y)+b(x+y) |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | (a+3)(a-3)=a2-9 | B. | x2+2x-3=x(x+2)-3 | C. | a2b+ab2=ab(a+b) | D. | m2-2m-3=m(m-2-$\frac{3}{m}$) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com