精英家教网 > 初中数学 > 题目详情

【题目】如图,矩形ABCD中,AB=10,BC=8,PAD上一点,将ABP沿BP翻折至EBP(A落在点E),PECD相交于点O,且OEOD,则DP的长为(  )

A. B. C. 1 D.

【答案】A

【解析】

由折叠的性质得出EP=AP,∠E=∠A=90°,证△ODP≌△OEG,得出OP=OG,PD=GE,设AP=EP=x,在直角三角形BCG中,由勾股定理得BC2+CG2=BG2,82+(10-x)2=(x+2)2,再求得x.

如图所示,由折叠的性质得出EP=AP,∠E=∠A=90°,BE=AB=10,由ASA证明△ODP≌△OEG,得出OP=OG,PD=GE,设AP=EP=x,则PD=GE=8-x,DG=PE=x,求出GC=10-x、BG=10-(8-x),根据勾股定理BC2+CG2=BG2,

得出方程82+(10-x)2=(x+2)2,解方程即可得到x=,即AP的长为.

所以,PD=AD-AP=8-=.

故选:A

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点A( ,0),B(3 ,2),C(0,2).动点D以每秒1个单位的速度从点O出发沿OC向终点C运动,同时动点E以每秒2个单位的速度从点A出发沿AB向终点B运动.过点E作EF⊥AB,交BC于点F,连接DA、DF.设运动时间为t秒.

(1)求∠ABC的度数;
(2)当t为何值时,AB∥DF;
(3)设四边形AEFD的面积为S.①求S关于t的函数关系式;
②若一抛物线y=﹣x2+mx经过动点E,当S<2 时,求m的取值范围(写出答案即可).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】细心观察下图,认真分析各式,然后解答问题.

()2+1=2,S1

()2+1=3,S2

()2+1=4,S3.

(1)请用含n(n是正整数)的等式表示上述式子的变化规律;

(2)推算出OA10的长;

(3)求出S12+S22+S32+S102的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在下列条件中:①∠ABC②∠AB=2C③∠ABaC④∠A∶∠B∶∠C=123,能确定△ABC为直角三角形的条件有(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知数轴上点A、点B对应的数分别为6

B两点的距离是______

时,求出数轴上点C表示的有理数;

一元一次方解应用题:点D以每秒4个单位长度的速度从点B出发沿数轴向左运动,点E以每秒3个单位长度的速度从点A出发沿数轴向右运动,点F从原点出发沿数轴运动,点D、点E、点F同时出发,t秒后点D、点E相距1个单位长度,此时点D、点F重合,求出点F的速度及方向.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】研究问题:一个不透明的盒中装有若干个只有颜色不一样的红球与黄球,怎样估算不同颜色球的数量?
操作方法:先从盒中摸出8个球,画上记号放回盒中,再进行摸球实验,摸球实验的要求:先搅拌均匀,每次摸出一个球,放回盒中,再继续.
活动结果:摸球实验活动一共做了50次,统计结果如下表:

球的颜色

无记号

有记号

红色

黄色

红色

黄色

摸到的次数

18

28

2

2

推测计算:由上述的摸球实验可推算:
(1)盒中红球、黄球各占总球数的百分比分别是多少?
(2)盒中有红球多少个?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点A(4,0),B(0,4 ),把一个直角三角尺DEF放在△OAB内,使其斜边FD在线段AB上,三角尺可沿着线段AB上下滑动.其中∠EFD=30°,ED=2,点G为边FD的中点.

(1)求直线AB的解析式;
(2)如图1,当点D与点A重合时,求经过点G的反比例函数y= (k≠0)的解析式;
(3)在三角尺滑动的过程中,经过点G的反比例函数的图象能否同时经过点F?如果能,求出此时反比例函数的解析式;如果不能,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形OABC中,点B的坐标是(3,3),点E、F分别在边BC、BA上,CE=1,若∠EOF=45°,则F点的纵坐标是( )

A. 1 B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在矩形ABCD中,动点P从点B出发,沿BCCDDA运动至点A停止.设点P运动的路程为x△ABP的面积为y,如果y关于x的函数图象如图2所示,则△ABC的面积是 ( )

A. 10B. 16C. 18D. 20

查看答案和解析>>

同步练习册答案