精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,二次函数的图象交坐标轴于A(﹣1,0),B(4,0),C(0,﹣4)三点,点P是直线BC下方抛物线上一动点.

(1)求这个二次函数的解析式;

(2)是否存在点P,使POC是以OC为底边的等腰三角形?若存在,求出P点坐标;若不存在,请说明理由;

(3)动点P运动到什么位置时,PBC面积最大,求出此时P点坐标和PBC的最大面积.

【答案】(1)抛物线解析式为y=x2﹣3x﹣4(2)存在满足条件的P点,其坐标为( ,﹣2)(3)P点坐标为(2,﹣6)时,PBC的最大面积为8.

【解析】

试题分析:(1)由A、B、C三点的坐标,利用待定系数法可求得抛物线解析式;(2)由题意可知点P在线段OC的垂直平分线上,则可求得P点纵坐标,代入抛物线解析式可求得P点坐标;(3)过P作PEx轴,交x轴于点E,交直线BC于点F,用P点坐标可表示出PF的长,则可表示出PBC的面积,利用二次函数的性质可求得PBC面积的最大值及P点的坐标.

试题解析:(1)设抛物线解析式为y=ax2+bx+c,

把A、B、C三点坐标代入可得,解得

抛物线解析式为y=x2﹣3x﹣4;

(2)作OC的垂直平分线DP,交OC于点D,交BC下方抛物线于点P,如图1,

PO=PD,此时P点即为满足条件的点,C(0,﹣4),D(0,﹣2),P点纵坐标为﹣2,

代入抛物线解析式可得x2﹣3x﹣4=﹣2,解得x=(小于0,舍去)或x=

存在满足条件的P点,其坐标为(,﹣2);

(3)点P在抛物线上,可设P(t,t2﹣3t﹣4),

过P作PEx轴于点E,交直线BC于点F,如图2,

B(4,0),C(0,﹣4),直线BC解析式为y=x﹣4,F(t,t﹣4),

PF=(t﹣4)﹣(t2﹣3t﹣4)=﹣t2+4t,

SPBC=SPFC+SPFB=PFOE+PFBE=PF(OE+BE)=PFOB=(﹣t2+4t)×4=﹣2(t﹣2)2+8,当t=2时,SPBC最大值为8,此时t2﹣3t﹣4=﹣6,

当P点坐标为(2,﹣6)时,PBC的最大面积为8.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知:如图,点P在线段AB外,且PA=PB,求证:点P在线段AB的垂直平分线上,在证明该结论时,需添加辅助线,则作法不正确的是(  )

A. 作∠APB的平分线PCAB于点C

B. 过点PPCAB于点CAC=BC

C. AB中点C,连接PC

D. 过点PPCAB,垂足为C

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,BC,ADBC,垂足为D,AE平分BAC.已知B=65°DAE=20°,求C的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,已知∠BAC=∠EAD=90o.

1)判断∠BAE与∠CAD的大小关系,并说明理由.

2)当∠EAC=60o时,求∠BAD的大小.

3)探究∠EAC与∠BAD的数量关系,请直接写出结果,不要求说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠C90°,以顶点A为圆心,适当长为半径画弧,分别交ACAB于点MN,再分别以点MN为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若AC24AB30,且216,则ABD的面积是( )

A.105B.120

C.135D.115

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=ax2+bx+cx轴交于AB两点,顶点C的纵坐标为﹣2,现将抛物线向右平移2个单位,得到抛物线y=a1x2+b1x+c1,则下列结论正确的是 .(写出所有正确结论的序号)

①b0

②a﹣b+c0

阴影部分的面积为4

c=﹣1,则b2=4a

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】今年312日植树节,美华中学为了进一步绿化学校,计划购买甲、乙两种树苗共计50棵.设购买甲种树苗棵,有关甲、乙两种树苗的信息如下:甲种树苗每棵50元,乙种树苗每棵80元;甲种树苗的成活率为90%,乙种树苗的成活率为95%.

1)根据信息填表(用含的式子表示):

树苗类型

甲种树苗

乙种树苗

购买树苗的数量(单位:棵)

购买树苗的费用(单位:元)

2)如果购买甲、乙两种树苗共用去2560元,那么甲、乙两种树苗各购买了多少棵?

3)如果要使这批树苗的成活率不低于92%,请设计一种购买甲、乙树苗的方案,使购买甲、乙两种树苗的费用最少,写出购买方案并计算出购买甲、乙两种树苗的总费用.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC≌△ADE,线段BC的延长线过点E,与线段AD交于点F,∠ACB=∠AED108°,∠CAD12°,∠B48°,则∠DEF的度数_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,AD=BC=12AB=CDBD=15,点ED点出发,以每秒4个单位的速度沿D→A→D匀速移动,点F从点C出发,以每秒1个单位的速度沿CB向点B作匀速移动,点G从点B出发沿BD向点D匀速移动,三个点同时出发,当有一个点到达终点时,其余两点也随之停止运动,假设移动时间为t秒.

1)试说明:AD∥BC

2)在移动过程中,小明发现有△DEG△BFG全等的情况出现,请你探究这样的情况会出现几次?并分别求出此时的移动时间tG点的移动距离.

查看答案和解析>>

同步练习册答案