【题目】某中学开展黄梅戏演唱比赛,组委会将本次比赛的成绩(单位:分)进行整理,并绘制成如下频数分布表和频数分布直方图(不完整).
成绩 | 频数 | 频率 |
| 2 | 0.04 |
| 0.16 | |
| 20 | 0.40 |
| 16 | 0.32 |
| 4 |
|
合计 | 50 | 1 |
请你根据图表提供的信息,解答下列问题:
(1)求出,的值并补全频数分布直方图.
(2)将此次比赛成绩分为三组:;;若按照这样的分组方式绘制扇形统计图,则其中组所在扇形的圆心角的度数是多少?
(3)学校准备从不低于90分的参赛选手中任选2人参加市级黄梅戏演唱比赛,求都取得了95分的小欣和小怡同时被选上的概率.
【答案】(1)a=8,b=0.08;补图见解析;(2)144°;(3).
【解析】
(1)根据题中可得总人数为50人,则中人数所占频率即可求出a的值,则中出现的频数即可求得b的值;
(2)根据圆心角的度数为所占百分比乘以360°即可求解;
(3)根据概率初步中树状图的作图方法作图求解即可.
(1),.
补全频数分布直方图如下:
(2).
故C组所在扇形的圆心角的度数为.
(3)由题意知,不低于90分的学生共有4人,设这四名学生分别为,,,,其中小欣和小怡分别用,表示,根据题意,画树状图如下.
由树状图可知,共有12种等可能的结果,其中小欣和小怡同时被选上的结果有2种,故小欣和小怡同时被选上的概率是.
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,函数的图象记为,函数的图象记为,其中为常数.图象,合起来得到的图象记为.
(1)当时,
①点在图象上,求的值;
②求图象与轴的交点坐标;
(2)当图象的最低点到轴距离为时,求的值;
(3)已知线段的两个端点坐标分别为,,当图象与线段有两个交点时,直接写出的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在菱形ABCD中,点P是BC边上一点,连接AP,点E,F是AP上的两点,连接DE,BF,使得∠AED=∠ABC,∠ABF=∠BPF.
求证:(1)△ABF≌△DAE;
(2)DE=BF+EF.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A在反比例函数y=(x>0)的图象上,点B在反比例函数y=(x>0)的图象上,AB∥x轴,BC⊥x轴,垂足为C,连接AC,若△ABC的面积为2,则k的值为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某市为了解本地七年级学生寒假期间参加社会实践活动情况,随机抽查了部分七年级学生寒假参加社会实践活动的天数(“A﹣﹣﹣不超过5天”、“B﹣﹣﹣6天”、“C﹣﹣﹣7天”、“D﹣﹣﹣8天”、“E﹣﹣﹣9天及以上”),并将得到的数据绘制成如下两幅不完整的统计图.
请根据以上的信息,回答下列问题:
(1)补全扇形统计图和条形统计图;
(2)所抽查学生参加社会实践活动天数的众数是 (选填:A、B、C、D、E);
(3)若该市七年级约有2000名学生,请你估计参加社会实践“活动天数不少于7天”的学生大约有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).
(1)以点B为位似中心,在网格内画出△A1B1C1,使△A1B1C1与△ABC位似,且位似比为2:1,点C1的坐标是_______;
(2)△A1B1C1的面积是_______平方单位.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图:梯形ABCD中,AD∥BC,∠ABC=90°,AD=9,BC=12,AB=6,在线段BC上任取一点P,连接DP,作射线PE⊥DP,PE与直线AB交于点E.
(1)试确定当CP=3时,点E的位置;
(2)若设CP=x,BE=y,试写出y关于自变量x的函数关系式.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com