精英家教网 > 初中数学 > 题目详情
17.如图,D是△ABC中BC边上一点,E是AD上一点,EB=EC,∠1=∠2,试判断AD与BC的位置关系,并说明理由.

分析 由等腰三角形的性质和已知条件得出∠ABC=∠ACB,由等角对等边得出AB=AC,由SAS证明△ABE≌△ACE,得出对应角相等∠BAD=∠CAD,再由等腰三角形的三线合一性质即可得出结论.

解答 解:AD⊥BC,理由如下:
∵EB=EC,
∴∠EBC=∠ECB,
∵∠1=∠2,
∴∠EBC+∠1=∠ECB+∠2,
即∠ABC=∠ACB,
∴AB=AC,
在△ABE和△ACE中,
$\left\{\begin{array}{l}{AB=AC}&{\;}\\{∠ABC=∠ACB}&{\;}\\{EB=EC}&{\;}\end{array}\right.$,
∴△ABE≌△ACE(SAS),
∴∠BAD=∠CAD,
即AD平分∠BAC,
又∵AB=AC,
∴AD⊥BC.

点评 本题考查了全等三角形的判定与性质、等腰三角形的判定与性质;熟练掌握等腰三角形的性质,证明三角形全等是解决问题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

9.如图,AB=AC,∠BAC=120°,AD⊥AC,AE⊥AB.
(1)求∠C的度数;
(2)求证:△ADE是等边三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.已知m+n-3(m-2n)=P,-5m-4n+(6m-4n)=Q,则m+n的结果(  )
A.P+QB.-P-QC.PD.-Q

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.正方形ABCD中,∠EAF=45°,连接对角线BD交AE于M,交AF于N,求证:以DN、BM、MN为三边的三角形为直角三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.已知等腰△ABC和等腰△ADE的顶点公共,B,A,E在同一条直线上,∠BAC=∠DAE,PB=PD,PC=PE.
(1)如图1,若∠BAC=90°,则∠BPC+∠DPE=180°;
(2)如图2,若∠BAC=α,则∠BPC+∠DPE=2α
(3)在图1的基础上将等腰Rt△ABC绕点A旋转一个角度,得到图3,则∠BPC+∠DPE=180°;并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.在平面直角坐标系中,坐标轴上的两个点A(a,0)、B(0,b)、(a<0,b>0),满足$\root{3}{a+b}$=$\sqrt{c-3}$+$\sqrt{3-c}$.
(1)c的值为3,∠ABO的度数为45°;
(2)如图1,点E是线段OB(端点除外)上一点,过点B作BF⊥AE交AE的延长线于点F,过点O作OM∥AB交BF的延长线于点M,连接EM,求证:∠BEF=∠OEM;
(3)如图2,在第四象限有一点H,满足∠HBO=2∠HAO,BH交x轴于点D,且点O在线段AH的垂直平分线上,求S△ABD:S△ABH的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,若线段AC=2,AC=$\frac{1}{5}$AB,点D是线段BC的中点,求线段AD的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.萱萱家为方便她上学,在黄冈小河中学旁边购买了一套经济适用房.她家准备将地面铺上地砖,地面结构如图所示.根据图中的数据(单位:m),解答下列问题:
(1)写出用含x、y的整式表示地面总面积;
(2)已知客厅面积是厨房面积的4倍,且地面总面积是卫生间面积的15倍,铺1m2地砖的平均费用为80元,求铺地砖的总费用为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,已知△ABC中,AB=AC,AD平分∠BAC,求证:△ABD≌△ACD.请补充完整证明△ABD≌△ACD的过程和理由.

查看答案和解析>>

同步练习册答案