分析 延长BC到G,使BG=DF连接AG,在AG截取AH=AN,连接MH、BH,证得△ABG≌△ADF,△AMN≌△AMH,△DFN≌△BGH,最后利用等量代换求得答案即可.
解答 证明:延长CB到G,使BG=DF,连接AG,在AG截取AH=AN,连接MH、BH,如图所示:![]()
∵四边形ABCD为正方形,
∴AB=BC=CD=AD,∠BDC=∠ABD=45°,∠BAD=∠ADF=∠ABE=∠ABG=90°,
在△ABG和△ADF中,
$\left\{\begin{array}{l}{AB=AD}\\{∠ABG=∠ADF}\\{BG=DF}\end{array}\right.$,
∴△ABG≌△ADF(SAS),
∴∠BAG=∠DAF,∠AFD=∠G,AF=AG,
∴∠GAE=∠BAG+∠BAE=∠DAF+∠BAE=∠BAD-∠EAF=90°-45°=45°=∠EAF,
在△AMN和△AMH中,
$\left\{\begin{array}{l}{AN=AH}\\{∠MAN=∠MAH=45°}\\{AM=AM}\end{array}\right.$,
∴△AMN≌△AMH(SAS),
∴MN=MH,
∵AF=AG,AN=AH,
∴FN=AF-AN=AG-AH=GH,
在△DFN和△BGH中,
$\left\{\begin{array}{l}{DF=BG}\\{∠NFD=∠G}\\{FN=GH}\end{array}\right.$,
∴△DFN≌△BGH(SAS),
∴∠GBH=∠NDF=45°,DN=BH,
∴∠MBH=∠ABH+∠ABD=∠ABG-∠GBH+∠ABD=90°-45°+45°=90°,
∴BM2+DN2=BM2+BH2=MH2=MN2,
∴DN、BM、MN为三边的三角形为直角三角形.
点评 此题考查正方形的性质,三角形全等的判定与性质,勾股定理的逆定理;熟练掌握正方形的性质,证明三角形全等是解决问题的关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com