精英家教网 > 初中数学 > 题目详情
5.已知,如图,四边形ABCD中.AB=AD,CB=CD,AC与BD交于点E.求证:
(1)∠1=∠2;
(2)AC⊥BD.

分析 (1)由SSS证明△ABC≌△ADC,得出对应角相等即可;
(2)由线段垂直平分线的性质定理的逆定理得出点A在BD的垂直平分线上,点C在BD的垂直平分线上,得出AC垂直平分BD即可.

解答 证明:(1)在△ABC和△ADC中,
$\left\{\begin{array}{l}{AB=AD}&{\;}\\{CB=CD}&{\;}\\{AC=AC}&{\;}\end{array}\right.$,
∴△ABC≌△ADC(SSS),
∴∠1=∠2;
(2)∵AB=AD,CB=CD,
∴点A在BD的垂直平分线上,点C在BD的垂直平分线上,
∴AC垂直平分BD,
∴AC⊥BD.

点评 本题考查了全等三角形的判定与性质、线段垂直平分线的判定;熟练掌握全等三角形的判定方法是解决问题(1)的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

3.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,tan∠ACD=$\frac{3}{4}$,AB=5,那么CD的长是$\frac{12}{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,二次函数y=x2+bx+c的图象过点B(0,-2).它与反比例函数y=-$\frac{12}{x}$的图象交于点A(m,4),求这个二次函数的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.AD是等腰直角△ABC斜边BC上的高,P是射线AD上一点,连接PC,过点P作PE⊥PC交射线BA于点E
(1)当点P在线段AD上时,如图①所示,求证:PC=PE;
(2)当点P在AD的延长线上时,如图②所示,四边形AEPC的面积是16,BE=4,求AP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.如图,已知△ABC和△CDE均是等边三角形,点B、C、D在同一条直线上,BE与AD交于点O,AD与CE交于点N,AC与BE交于点M,连OC、MN,则下列结论①AD=BE;②AN=BM;③MN∥BD;④∠BOC=∠DOC;⑤若∠ADE=20°,则∠BED=100°;⑥OB=AO+OC,其中正确的结论个数有(  )
A.3个B.4个C.5个D.6个

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.如图所示,已知二次函数y1=ax2+bx+c(a≠0)与一次函数y2=kx+m(k≠0)的图象相交于点A(-2,4),B(8,2).根据图象回答:
(1)方程ax2+bx+c=kx+m的解是x1=-2,x2=8;
(2)方程组$\left\{\begin{array}{l}{y=a{x}^{2}+bx+c}\\{y=kx+m}\end{array}\right.$的解是$\left\{\begin{array}{l}{{x}_{1}=-2}\\{{y}_{1}=4}\end{array}\right.$,$\left\{\begin{array}{l}{{x}_{2}=8}\\{{y}_{2}=2}\end{array}\right.$;
(3)当x满足x<-2或x>8时,y1>y2
(4)当x满足-2<x<8时,y2<y1

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.已知:如图,在△ABC中,∠C=90°,AC=8cm,BC=6cm,D是斜边AB的中点.点P从点B出发沿BC方向匀速运动,速度为1cm/s;同时,点Q从点A出发,沿AC方向匀速运动,速度为2cm/s.当点Q停止运动时,点P也停止运动.连接PQ、PD、QD.设运动时间为t(s)(0<t<4).
(1)当t为何值时,△PQC是等腰直角三角形?
(2)设△PQD的面积为y(cm2),求y与t之间的函数关系式;是否存在某一时刻t,使△PQD的面积是Rt△ABC的面积的$\frac{1}{4}$?若存在,求出t的值;若不存在,请说明理由;
(3)是否存在某一时刻t,使QD⊥PD?若存在,求出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.王华在学习相似三角形时,在北京市义务教育教科书九年级上册第31页遇到这样一道题,如图1,在△ABC中,P是边AB上的一点,连接CP,要使△ACP∽△ABC,还需要补充的一个条件是∠ACP=∠B(或∠APC=∠ACB),或AC2=AP•AB.
请回答:
(1)王华补充的条件是∠ACP=∠B(或∠APC=∠ACB),或AC2=AP•AB.
(2)请你参考上面的图形和结论,探究,解答下面的问题:
如图2,在△ABC中,∠A=30°,AC2=AB2+AB•BC.求∠C的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.已知点(x1,y1)、(x2,y2)、(x3,y3)在双曲线$y=\frac{1}{x}$上,当x1<0<x2<x3时,y1、y2、y3的大小关系是(  )
A.y1<y2<y3B.y1<y3<y2C.y3<y1<y2D.y2<y3<y1

查看答案和解析>>

同步练习册答案