【题目】如图,△ABC中,D是BC边上一点,E是AD的中点,过点A作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.
(1)求证:△AEF≌△DEC;
(2)若AB=AC,试判断四边形AFBD的形状,并证明你的结论.
【答案】(1)详见解析;(2):若AB=AC,则四边形AFBD是矩形,理由详见解析.
【解析】
(1)根据两直线平行,内错角相等求出∠AFE=∠DCE,∠FAE=∠CDE,然后利用“角角边”证明△AEF和△DEC全等;
(2)由(1)知AF平行等于BD,易证四边形AFBD是平行四边形,而AB=AC,AD是中线,利用等腰三角形三线合一定理,可证AD⊥BC,即∠ADB=90°,那么可证四边形AFBD是矩形.
(1)证明:∵AF∥BC,
∴∠AFE=∠DCE,∠FAE=∠CDE,
∵点E为AD的中点,
∴AE=DE,
在△AEF和△DEC中,
∴△AEF≌△DEC(AAS);
(2)解:若AB=AC,则四边形AFBD是矩形.理由如下:
∵AF∥BD,AF=BD,
∴四边形AFBD是平行四边形,
∵△AEF≌△DEC,
∴AF=CD,
∵AF=BD,
∴CD=BD;
∵AB=AC,BD=CD,
∴∠ADB=90°,
∴平行四边形AFBD是矩形.
科目:初中数学 来源: 题型:
【题目】如图,在△MNQ中,MN=11,NQ=,,矩形ABCD,BC=4,CD=3,点A与M重合,AD与MN重合.矩形ABCD沿着MQ方向平移,且平移速度为每秒5个单位,当点A与Q重合时停止运动.
(1)MQ的长度是 ;
(2)运动 秒,BC与MN重合;
(3)设矩形ABCD与△MNQ重叠部分的面积为S,运动时间为t,求出S与t之间的函数关系式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,四边形ABCD为菱形,且点D(﹣4,0)在x轴上,点B和点C(0,3)在y轴上,反比例函数y=(k≠0)过点A,点E(﹣2,m)、点F分别是反比例函数图象上的点,其中点F在第一象限,连结OE、OF,以线段OE、OF为邻边作平行四边形OEGF.
(1)写出反比例函数的解析式;
(2)当点A、O、F在同一直线上时,求出点G的坐标;
(3)四边形OEGF周长是否有最小值?若存在,求出这个最值,并确定此时点F的坐标,若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①k<0;②a>0;③关于x的方程kx﹣x=a﹣b的解是x=3;④当x<3时,y1<y2中.则正确的序号有________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,已知 Rt △ ACB 中, AC =3, BC =4,过直角顶点 C 作 CA 1 ⊥ AB ,垂足为 A 1 ,再过 A 1 作 A 1 C 1 ⊥ BC ,垂足为 C 1 ,…...,这样一直作下去得到了一组线段 CA 1 , A 1 C 1 , C 1 A 2 ,…,则第10条线段 A 5 C 5 =________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等腰直角三角形OAB的三个定点分别为、、,过A作y轴的垂线.点C在x轴上以每秒的速度从原点出发向右运动,点D在上以每秒的速度同时从点A出发向右运动,当四边形ABCD为平行四边形时C、D同时停止运动,设运动时间为.当C、D停止运动时,将△OAB沿y轴向右翻折得到△,与CD相交于点E,P为x轴上另一动点.
(1)求直线AB的解析式,并求出t的值.
(2)当PE+PD取得最小值时,求的值.
(3)设P的运动速度为1,若P从B点出发向右运动,运动时间为,请用含的代数式表示△PAE的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在四边形ABCD中,AB=3CD,AB∥CD,CE∥DA,DF∥CB.
(1)求证:四边形CDEF是平行四边形;
(2)填空:
①当四边形ABCD满足条件 时(仅需一个条件),四边形CDEF是矩形;
②当四边形ABCD满足条件 时(仅需一个条件),四边形CDEF是菱形.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com