精英家教网 > 初中数学 > 题目详情

【题目】如图,在四边形ABCD中,点E是线段AD上的任意一点(EAD不重合),GFH分别是BEBCCE的中点.

1)证明四边形EGFH是平行四边形;(2)若EFBC,且EF=BC,证明平行四边形EGFH是正方形

【答案】1)平行四边形

2)见解析

【解析】

1)通过中位线定理得出GFEHGF=EH,所以四边形EGFH是平行四边形;

2)当添加了条件EFBC,且EF=BC后,通过对角线相等且互相垂直平分(EFGH,且EF=GH)就可证明是正方形.

证明:(1)∵GF分别是BEBC的中点,
GFECGF=EC
又∵HEC的中点,EH=EC
GFEHGF=EH
∴四边形EGFH是平行四边形.
2)连接GHEF


GH分别是BEEC的中点,
GHBCGH=BC
又∵EFBCEF=BC
又∵EFBCGH是三角形EBC的中位线,
GHBC
EFGH
又∵EF=GH
∴平行四边形EGFH是正方形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知A=x-2y,B=-x-4y+1.

(1)求2(A+B)-(A-B);(结果用含x,y的代数式表示

(2)当互为相反数时,求(1)中代数式的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知数轴上有两点AB,它们对应的数分别为ab,其中a=12.

1)在点B的左侧作线段BC=AB,在B的右侧作线段BD=3AB(要求:作出图形,不写作法,保留作图痕迹);

2)若点C对应的数为c,点D对应的数为的d,且AB=20,求cd的值;

3)在(2)的条件下,设点MBD的中点,N是数轴上一点,且CN=2DN,请直接写出MN的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,圆的周长为4个单位长,数轴每个数字之间的距离为1个单位,在圆的四等分点处分别标上0123,先让圆周上表示数字0的点与数轴上表示-1的点重合.再将数轴按逆时针方向环绕在该圆上(如圆周上表示的数字3的点与数轴上表示-2的点重合……),则该数轴上表示-2019的点与圆周上重合的点表示的数字是(

A.0B.1C.2D.3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2016年泉州市初中体育中考中随意抽取某校5位同学一分钟跳绳的次数分别为158160154158170则由这组数据得到的结论错误的是(  )

A. 平均数为160 B. 中位数为158 C. 众数为158 D. 方差为20.3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,矩形ABCD中,AB=4cmBC=8cmAC的垂直平分线EF分别交ADBC于点EF,垂足为O

1)如图1,连接AFCE.求证四边形AFCE为菱形,并求AF的长;

2)如图2,动点PQ分别从AC两点同时出发,沿AFBCDE各边匀速运动一周.即点PA→F→B→A停止,点QC→D→E→C停止.在运动过程中,

①已知点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒,当ACPQ四点为顶点的四边形是平行四边形时,求t的值.

②若点PQ的运动路程分别为ab(单位:cmab≠0),已知ACPQ四点为顶点的四边形是平行四边形,求ab满足的数量关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的一元二次方程x2+(k﹣5)x+1﹣k=0(其中k为常数).

(1)求证无论k为何值,方程总有两个不相等实数根;

(2)已知函数y=x2+(k﹣5)x+1﹣k的图象不经过第三象限,求k的取值范围;

(3)若原方程的一个根大于3,另一个根小于3,求k的最大整数值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:数学活动课上,陈老师给出如下定义:有一组对边相等而另一组对边不相等的凸四边形叫做对等四边形.

理解:(1)如图1,已知ABC在格点(小正方形的顶点)上,请在方格图中画出以格点为顶点,ABBC为边的两个对等四边形ABCD

应用:(2)如图2,在RtPBC中,∠PCB90°BC9,点ABP边上,且AB13ADPCCD12,若PC上存在符合条件的点M,使四边形ABCM为对等四边形,求出CM的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:在数轴上A点表示数aB点示数bC点表示数cb是最小的正整数,且ab满足 +(c-7)2=0.

(1) a= b= c=

(2) 若将数轴折叠,使得A点与C点重合,则点B与数 表示的点重合.

(3) ABC开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.则AB= AC= BC= .(用含t的代数式表示)

(4) 请问:3BC-2AB的值是否随着时间t的变化而改变? 若变化,请说明理由;若不变,请求其值.

查看答案和解析>>

同步练习册答案