【题目】已知点是反比例函数图象上的动点,轴,轴,分别交反比例函数的图象于点、,交坐标轴于、,且,连接.现有以下四个结论:①;②在点运动过程中,的面积始终不变;③连接,则;④不存在点,使得.其中正确的结论的序号是__________.
【答案】①②③
【解析】
①由反比例函数图象上点的坐标特征用函数a的代数式表示出来b,并找出点C坐标,根据AC=3CD,即可得出关于k的一元一次方程,解方程即可得出结论;
②根据①得出A、C的坐标,由AB∥x轴找出B点的坐标,由此即可得出AB、AC的长度,利用三角形的面积公式即可得出结论;
③已知B(,),C(a,),D(a,0),E(0,)四点坐标,B、C、D、E四点坐标,经过B、C两点的直线斜率k1=,经过D、E两点的直线斜率k2=,得出,即
④先假设,得到对应边成比例,列出关于a的等式,看a是否有解,即可求解.
①∵A(a,b),且A在反比例函数的图象上,
∴
∵AC∥y轴,且C在反比例函数的图象上,
∴C(a,)
又∵AC=3CD,
∴AD=4CD,即
∴k=2.
故①正确
②由①可知:A(a,),C(a,)
∵AB∥x轴,
∴B点的纵坐标为,
∵点B在反比例函数的函数图象上,
∴,解得:x=,
∴点B(,),
∴AB=a=,AC==
∴S=AB×AC=××=
∴在点A运动过程中,△ABC面积不变,始终等于
故②正确
③连接DE,如图所示
∵B(,),C(a,)
∴经过B、C两点的直线斜率k1=
∵轴,轴
∴D(a,0),E(0,)
∴经过D、E两点的直线斜率k2=
∴,即
故③正确
④假设
∴
∴
解得
∴当时,
故④错误
故答案为:①②③
科目:初中数学 来源: 题型:
【题目】阅读下列解题过程:
例:若代数式,求a的取值.
解:原式=,
当a<2时,原式=(2-a)+(4-a)=6-2a=2,解得a=2(舍去);
当2≤a<4时,原式=(a-2)+(4-a)=2=2,等式恒成立;
当a≥4时,原式=(a-2)+(a-4)=2a-6=2,解得a=4;
所以,a的取值范围是2≤a≤4.
上述解题过程主要运用了分类讨论的方法,请你根据上述理解,解答下列问题:
(1)当3≤a≤7时,化简:=_________;
(2)请直接写出满足=5的a的取值范围__________;
(3)若=6,求a的取值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】关于二次函数y=x2+2x+3的图象有以下说法:其中正确的个数是( )
①它开口向下;②它的对称轴是过点(﹣1,3)且平行于y轴的直线;③它与x轴没有公共点;④它与y轴的交点坐标为(3,0).
A.1B.2C.3D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形是菱形,,点从点出发,沿运动,过点作直线的垂线,垂足为,设点运动的路程为,的面积为,则下列图象能正确反映与之间的函数关系的是( ).
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在教室前面墙壁处安装了一个摄像头,当恰好观测到后面墙壁与底面交接处点时,摄像头俯角约为,受安装支架限制,摄像头观测的俯角最大约为,已知摄像头安装点高度约为米,摄像头与安装的墙壁之间距离忽略不计,
求教室的长(教室前后墙壁之间的距离的值);
若第一排桌子前边缘与前面墙壁的距离为米, 桌子的高度为米,那么第一排桌子是否在监控范围内?如果不在,应该怎样移动? (,精确到米)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若二次函数图象的顶点在一次函数的图象上,则称为的中雅函数,如:是的中雅函数.
(1)判断二次函数是否为一次函数的中雅函数,并说明理由;
(2)若关于的一次函数的中雅函数与轴两个交点间的距离为,求直线与坐标轴所围三角形的面积;
(3)已知关于的一次函数的中雅函数为,与平行的直线交中雅函数的图象于、两点,若轴上有且仅有一个点,使得,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数的图象与y轴交于C(0,8),且与反比例函数y=(x>0)的图象在第一象限内交于A(3,a),B(1,b)两点.
⑴求△AOC的面积;
⑵若=4,求反比例函数和一次函数的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,BC∥AD,BC=AD,点E为AD的中点,点F为AE的中点,AC⊥CD,连接BE、CE、CF.
(1)判断四边形ABCE的形状,并说明理由;
(2)如果AB=4,∠D=30°,点P为BE上的动点,求△PAF的周长的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,∠BAD=100°,∠B=∠D=90°,在BC、CD上分别找一个点M、N,使△AMN的周长最小,则∠AMN+∠ANM的度数为( )
A.130°B.120°C.160°D.100°
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com