【题目】如图,E,F,G,H分别是边AB,BC,CD,DA的中点,连接EF,FG,GH,HE.
(1)判断四边形EFGH的形状,并证明你的结论;
(2)当BD,AC满足什么条件时,四边形EFGH是正方形?请说明理由.
【答案】(1)见解析;(2)见解析
【解析】试题分析:(1)在△ABC中,E.F分别是边AB、BC中点,
得到EF∥AC,且 GH∥AC,且得到四边形EFGH是平行四边形;
(2)四边形EFGH是平行四边形,再由AC=BD,得出EH=EF,从而证得四边形EFGH是菱形.对角线相等,推知四边形EFGH是正方形;
试题解析:(1)在△ABC中,E.F分别是边AB、BC中点,
所以EF∥AC,且
同理有GH∥AC,且
∴EF∥GH且EF=GH,
故四边形EFGH是平行四边形.
(2)EH∥BD且
若AC=BD,则有EH=EF,
又因为四边形EFGH是平行四边形,
∴四边形EFGH是菱形,
∵AC⊥BD,
即:当AC=BD且AC⊥BD时,四边形EFGH是正方形.
科目:初中数学 来源: 题型:
【题目】如图,点M是边长为4cm的正方形的边AB的中点,点P是正方形边上的动点,从点M出发沿着逆时针方向在正方形的边上以每秒1cm的速度运动,则当点P逆时针旋转一周时,随着运动时间的增加,△DMP面积达到5cm2的时刻的个数是( )
A.5
B.4
C.3
D.2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在笔直的铁路上A、B两点相距25km,C、D为两村庄,DA=10km,CB=15km,DA⊥AB于A,CB⊥AB于B,现要在AB上建一个中转站E,使得C、D两村到E站的距离相等.求E应建在距A多远处?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校为开展体育大课间活动,需要购买篮球与足球若干个.已知购买2个篮球和3个足球共需要380元;购买4个篮球和5个足球共需要700元.
(1)求购买一个篮球、一个足球各需多少元;
(2)若体育老师带了8000元去购买这种篮球与足球共100个.由于数量较多,店主给出“一律打九折”的优惠价,那么他最多能购买多少个篮球?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点P是正方形ABCD内一点,点P到点A、B和D的距离分别为1,2 , ,△ADP沿点A旋转至△ABP′,连结PP′,并延长AP与BC相交于点Q.
(1)求证:△APP′是等腰直角三角形;
(2)求∠BPQ的大小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线AB与CD相交于点O,OD恰为∠BOE的平分线.
(1)图中∠BOC的补角是 把符合条件的角都填出来);
(2)若∠AOD=145°,求∠AOE的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】回答下列问题:
(1)计算:①(x+2)(x+3)= ;② (x +7)( x-10)= ;③(x-5)(x-6)= .
(2)总结公式:(x+a)(x+b)= .
(3)已知a,b,m均为整数,且(x+a)(x+b)=x2+mx+6,求m的所有可能值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,把带有指针的圆形转盘A、B分别分成4等份、3等份的扇形区域,并在每一个小区域内标上数字(如图所示).小明、小乐两个人玩转盘游戏,游戏规则是:同时转动两个转盘,当转盘停止时,若指针所指两区域的数字之积为3的倍数,则小明胜;否则,小乐胜.(若有指针落在分割线上,则无效,需重新转动转盘)
(1)试用列表或画树状图的方法,求小明获胜的概率;
(2)请问这个游戏规则对小明、小乐双方公平吗?做出判断并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com