【题目】如图,在ABC中,过点C作CD//AB,E是AC的中点,连接DE并延长,交AB于点F,交CB的延长线于点G.连接AD、CF.
(1)求证:四边形AFCD是平行四边形;
(2)若GB=3,BC=6,BF=1,求AB的长.
【答案】(1)证明见详解;
(2)4
【解析】
(1)由E是AC的中点知AE=CE,由AB∥CD知∠AFE=∠CDE,据此根据“AAS”即可证△AEF≌△CED,从而得AF=CD,结合AB∥CD即可得证;
(2)证△GBF∽△GCD得,据此求得,由AF=CD及AB=AF+BF可得答案.
解:(1)∵E是AC的中点,
∴AE=CE,
∵AB∥CD,
∴∠AFE=∠CDE,
在△AEF和△CED中,
,
∴△AEF≌△CED(AAS),
∴AF=CD,
又AB∥CD,即AF∥CD,
∴四边形AFCD是平行四边形;
(2)∵AB∥CD,
∴△GBF∽△GCD,
∴,
∵GB=3,BC=6,BF=1,
∴,
即:,
∵四边形AFCD是平行四边形,
∴,
∴.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ABC=90°,D是边AC上的一点,连接BD,使∠A=2∠1,E是BC上的一点,以BE为直径的⊙O经过点D.
(1)求证:AC是⊙O的切线;
(2)若∠A=60°,⊙O的半径为2,求阴影部分的面积.(结果保留根号和π)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,AB、BC是半径为的⊙O内的两条弦,且AB=6,BC=8.(1)若∠ABC=90°,则=________;(2)若∠ABC=120°,则=______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,AC是弦,D是弧的中点,过点D作DE⊥AC交AC的延长线于点E.
(1)求证:DE是⊙O的切线;
(2)当AB=10,AC=时,求弧的长;
(3)当AB=20时,直接写出△ABC面积最大时,点D到直径AB的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】矩形ABCD与CEFG,如图放置,点B,C,E共线,点C,D,G共线,连接AF,取AF的中点H,连接GH.若BC=EF=2,CD=CE=1,则GH=( )
A. 1 B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC与△CDA关于点O成中心对称,过点O任作直线EF分别交AD,BC于点E,F,则下则结论:①点E和点F,点B和点D是关于中心O的对称点;②直线BD必经过点O;③四边形ABCD是中心对称图形;④四边形DEOC与四边形BFOA的面积必相等;⑤△AOE与△COF成中心对称.其中正确的个数为 ( )
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明利用函数与不等式的关系,对形如(为正整数)的不等式的解法进行了探究.
(1)下面是小明的探究过程,请补充完整:
①对于不等式,观察函数的图象可以得到如表格:
的范围 | ||
的符号 | + | ﹣ |
由表格可知不等式的解集为.
②对于不等式,观察函数的图象可以得到如表表格:
的范围 | |||
的符号 | + | ﹣ | + |
由表格可知不等式的解集为 .
③对于不等式,请根据已描出的点画出函数(x+1)的图象;
观察函数的图象补全下面的表格:
的范围 | ||||
的符号 | + | ﹣ |
|
|
由表格可知不等式的解集为 .
……
小明将上述探究过程总结如下:对于解形如(为正整数)的不等式,先将按从大到小的顺序排列,再划分的范围,然后通过列表格的办法,可以发现表格中的符号呈现一定的规律,利用这个规律可以求这样的不等式的解集.
(2)请你参考小明的方法解决下列问题:
①不等式的解集为 .
②不等式的解集为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com