【题目】已知:梯形
中,
,联结
(如图1). 点
沿梯形的边从点
移动,设点
移动的距离为
,
.
(1)求证:
;
(2)当点
从点
移动到点
时,
与
的函数关系(如图2)中的折线
所示. 试求
的长;
(3)在(2)的情况下,点
从点
移动的过程中,
是否可能为等腰三角形?若能,请求出所有能使
为等腰三角形的
的取值;若不能,请说明理由.
![]()
【答案】(1)证明见解析;(2)
;(3)
,
,
,
,
或![]()
【解析】
(1)由平行线的性质、直角三角形的性质、等腰三角形的性质得出∠ABD=∠CDB,∠A+∠ADC=180°,∠ABD+∠CBD=90°,∠ABD=∠ADB,得出∠A+2∠ABD=180°,2∠ABD+2∠CBD=180°,即可得出结论;
(2)作DE⊥AB于E,则DE=BC=3,CD=BE,由勾股定理求出AE=
=4,得出CD=BE=AB-AE=1;
(3)分情况讨论:①点P在AB边上时;②点P在BC上时;③点P在AD上时;由等腰三角形的性质和勾股定理即可得出答案.
(1)证明:∵
,
∴
,
又∵
,
∴![]()
∵
,
∴
,即![]()
∴![]()
(2)解:由点
,得
,
由点
点的横坐标是8,得
时,∴![]()
作
于
,∵
,∴
,
∵
,∴![]()
(3)
情况一:点
在
边上,作
,
当
时,
是等腰三角形,此时,
,
∴![]()
情况二:点
在
边上,当
时
是等腰三角形,
此时,
,
,
∴在
中,
,
即
,
∴![]()
情况三:点
在
边上时,
不可能为等腰三角形
情况四:点
在
边上,有三种情况
1°作
,当
时,
为等腰三角形,
此时,∵
,
∴
,
又∵
,
∴![]()
∴
,
∴
,
∴
,
∴![]()
∴![]()
2°当
时
为等腰三角形,
此时,![]()
3°当点
与点
重合时
为等腰三角形,
此时
或
.
科目:初中数学 来源: 题型:
【题目】如图(如图1所示)在△ABC中,∠ACB=90°,∠A=30°,BC=4,沿斜边AB的中线CD把这个三角形剪成△AC1D1和△BC2D2两个三角形(如图2所示).将△AC1D1沿直线D2B方向平移(点A,D1,D2,B始终在同一直线上),当点D1于点B重合时,平移停止.设平移距离D1D2为x,△AC1D1和△BC2D2的重叠部分面积为y,在y与x的函数图象大致是( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,等腰△ABC中,AC=BC,点O在AB边上,以O为圆心的圆经过点C,交AB边于点D,EF为⊙O的直径,EF⊥BC于点G,且D是
的中点.
(1)求证:AC是⊙O的切线;
(2)如图2,延长CB交⊙O于点H,连接HD交OE于点P,连接CF,求证:CF=DO+OP;
(3)在(2)的条件下,连接CD,若tan∠HDC=
,CG=4,求OP的长.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB=4,动点P从A出发,在直线AB上以每秒3个单位的速度向右运动,到达B后立即返回,回到A后停止运动,动点Q与P同时从A出发,在直线AB上以每秒1个单位的速度向左运动,当P停止运动时,点Q也停止运动,设点P的运动时间为t秒.
![]()
(1)若t=1,则BP的长是 PQ的长是 .
(2)当点P回到点A时,求BQ的长.
(3)在直线AB上取点C,使B是线段PC的中点,在点P的整个运动过程中,是否存在AC=AQ+3,若存在,求出此时t的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】从A,B两题中任选一题作答:
A.如图,在ΔABC中,分别以点A,B为圆心,大于
AB的长为半径画弧,两弧交与点M,N,作直线MN交AB于点E,交BC于点F,连接AF。若AF=6,FC=4,连接点E和AC的中点G,则EG的长为__.
![]()
B.如图,在ΔABC中,AB=2,∠BAC=60°,点D是边BC的中点,点E在边AC上运动,当DE平分ΔABC的周长时,DE的长为__.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点D是△ABC内一点,点E,F,G,H分别是AB,AC,CD,BD的中点。
![]()
(1)求证:四边形EFGH是平行四边形;(2)已知AD=6,BD=4,CD=3,∠BDC=90°,求四边形EFGH的周长。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=kx+b的图象与x轴交于点A,与反比例函数y=
(x>0)的图象交于点B(2,n),过点B作BC⊥x轴于点C,点P(3n﹣4,1)是该反比例函数图象上的一点,且∠PBC=∠ABC,求反比例函数和一次函数的表达式.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com