【题目】某快递公司针对新客户优惠收费,首件物品的收费标准为:若重量不超过10千克,则免运费;当重量为千克时,运费为元;第二件物品的收费标准为:当重量为千克时,运费为元。
(1)若新客户所奇首件物品的重量为13千克,则运费是多少元?
(2)若新客户所寄首件物品的运费为32元,则物品的重量是多少千克?
(3)若新客户所寄首件物品与第二件物品的重量之比为2:5,共付运费为60元,则两件物品的重量各是多少千克?
【答案】(1)6元;(2)26千克;(3)首件物品的重量为10千克,第二件物品的重量为25千克.
【解析】
(1)根据新客户所寄首件物品的重量为x千克(x>10)时,运费为(2x-20)元,把x=13代入2x-20,计算即可求解;
(2)根据快递公司针对新客户首件物品的收费标准,可知2x-20=32,解方程即可求解;
(3)设首件物品的重量为2a千克,则第二件物品的重量为5a千克,分①0<2a≤10;②2a>10两种情况进行讨论.
解:(1)∵13>10,
∴运费为:2×13-20=6(元).
答:若新客户所寄首件物品的重量为13千克,则运费是6元;
(2)由题意,得2x-20=32,
解得x=26.
答:若新客户所寄首件物品的运费为32元,则物品的重量是26千克;
(3)设首件物品的重量为2a千克,则第二件物品的重量为5a千克.
①当0<2a≤10,即0<a≤5时,
2×5a+10=60,解得a=5,
此时2a=10,5a=25;
②当2a>10,即a>5时,
2×2a-20+2×5a+10=60,解得a=5,
a不大于5,
∴此情况不符合题意,舍去.
综上,首件物品的重量为10千克,第二件物品的重量为25千克.
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,对角线AC、BD相交于点O,过点D作对角线BD的垂线交BA的延长线于点E.
(1)证明:四边形ACDE是平行四边形;
(2)若AC=8,BD=6,求△ADE的周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了解南山荔枝的销售情况,某部门对该市场的三种荔枝品种A,B,C在6月上半月的销售进行调查统计,绘制成如下两个统计图(均不完整),请你结合图中的信息,解答下列问题:
(1)该市场6月上半月共销售这三种荔枝多少吨?
(2)补全图1的统计图并计算图2中A所在扇形的圆心角的度数;
(3)某商场计划六月下半月进货A、B、C三种荔枝共300千克,根据该市场6月上半月的销售情况,求该商场应购进C品种荔枝多少千克比较合理?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有三个质地、大小都相同的小球分别标上数字2,﹣2,3后放入一个不透明的口袋搅匀,任意摸出一个小球,记下数字a后,放回口袋中搅匀,再任意摸出一个小球,又记下数字b.这样就得到一个点的坐标(a,b).
(1)求这个点(a,b)恰好在函数y=﹣x的图象上的概率.(请用“画树状图”或“列表”等方法给出分析过程,并求出结果)
(2)如果再往口袋中增加n(n≥1)个标上数字2的小球,按照同样的操作过程,所得到的点(a,b)恰好在函数y=﹣x的图象上的概率是(请用含n的代数式直接写出结果).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,D、F是AB边上的两点,以DF为直径的⊙O与BC相交于点E,连接EF,过F作FG⊥BC于点G,其中∠OFE= ∠A.
(1)求证:BC是⊙O的切线;
(2)若sinB= ,⊙O的半径为r,求△EHG的面积(用含r的代数式表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】今年世界环境日(即6月5日),某市发布了一份空气质量的抽样调查报告,其中该市2~5月随机调查的25天各空气质量级别的天数如下表所示:
(1)试估计该市今年的空气质量主要是哪个级别?
(2)根据抽样数据,预测该市今年空气质量级别为优和良的天数共约为多少天?
(3)根据调查报告,试对有关部门提一条建设“绿色城市”的建议.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD是正方形,点E,F分别在BC,AB上,点M在BA的延长线上,且CE=BF=AM,过点M,E分别作NM⊥DM,NE⊥DE交于N,连接NF.
(1)求证:DE⊥DM;
(2)猜想并写出四边形CENF是怎样的特殊四边形,并证明你的猜想.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com