精英家教网 > 初中数学 > 题目详情

【题目】如图,在菱形中,,点是这个菱形内部或边上的一点,若以点为顶点的三角形是等腰三角形,则两点不重合)两点间的最短距离为( )

A.B.C.D.

【答案】D

【解析】

分三种情形讨论①若以边BC为底.②若以边PC为底.③若以边PB为底.分别求出PD的最小值,即可判断.

解:在菱形ABCD中,
∵∠ABC=60°AB=1
∴△ABCACD都是等边三角形,
①若以边BC为底,则BC垂直平分线上(在菱形的边及其内部)的点满足题意,此时就转化为了直线外一点与直线上所有点连线的线段中垂线段最短,即当点P与点A重合时,PD值最小,最小值为1
②若以边PC为底,∠PBC为顶角时,以点B为圆心,BC长为半径作圆,与BD相交于一点,则弧AC(除点C外)上的所有点都满足PBC是等腰三角形,当点PBD上时,PD最小,最小值为
③若以边PB为底,∠PCB为顶角,以点C为圆心,BC为半径作圆,则弧BD上的点A与点D均满足PBC为等腰三角形,当点P与点D重合时,PD最小,显然不满足题意,故此种情况不存在;
综上所述,PD的最小值为

故选D

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD边长为4EFGH分别是ABBCCDDA上的点,且AEBFCGDH.设AE两点间的距离为x,四边形EFGH的面积为y,则yx的函数图象可能是(  )

A.B.

C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中抛物线经过原点,且与直线交于则两点.

1)求直线和抛物线的解析式;

2)点在抛物线上,解决下列问题:

①在直线下方的抛物线上求点,使得的面积等于20

②连接,作轴于点,若相似,请直接写出点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠ACB = 90°BC = 6AC = 8.点DAB边上一点,过点DDE // BC,交边ACE.过点CCF // AB,交DE的延长线于点F

1)如果,求线段EF的长;

2)求∠CFE的正弦值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2019年中国北京世界园艺博览会(以下简称世园会”)429日至107日在北京延庆区举行.世园会为满足大家的游览需求,倾情打造了4条各具特色的趣玩路线,分别是:解密世园会爱我家,爱园艺园艺小清新之旅快速车览之旅.李欣和张帆都计划暑假去世园会,他们各自在这4条线路中任意选择一条线路游览,每条线路被选择的可能性相同.

(1)李欣选择线路园艺小清新之旅的概率是多少?

(2)用画树状图或列表的方法,求李欣和张帆恰好选择同一线路游览的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将一个直角三角形纸片,放置在平面直角坐标系中,点,点,点.将沿翻折得到(点为点的对应点).

(Ⅰ)求的长及点的坐标;

(Ⅱ)点是线段上的点,点是线段上的点.

①已知轴上的动点,当取最小值时,求出点的坐标及点到直线的距离;

②连接,且,现将沿翻折得到(点为点的对应点),再将绕点顺时针旋转,旋转过程中,射线交直线分别为点,最后将沿翻折得到(点为点的对应点),连接,若,求点的坐标(直接写出结果即可).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,PBA延长线上一点,过点P作⊙O的切线,切点为D,连接BD,过点B作射线PD的垂线,垂足为C

1)求证:BD平分∠ABC

2)如果AB6sinCBD,求PD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为迎接国庆节,某工厂生产一种火爆的纪念商品,每件商品成本25元,工厂将该商品进行网络批发,批发单价(元)与一次性批发量(件)(为正整数)之间满足如图所示的函数关系.

1)求的函数解析式(也称关系式).

2)若一次性批发量超过20且不超过50件时,求获得的利润的函数关系式,同时求当批发量为多少件时,工厂获利最大?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,一次函数y2x+b的图象与x轴的交点为A20),与y轴的交点为B,直线AB与反比例函数y的图象交于点C(﹣1m).

1)求一次函数和反比例函数的表达式;

2)直接写出关于x的不等式2x+b的解集;

3)点P是这个反比例函数图象上的点,过点PPMx轴,垂足为点M,连接OPBM,当SABM2SOMP时,求点P的坐标.

查看答案和解析>>

同步练习册答案