精英家教网 > 初中数学 > 题目详情

【题目】如图点E在直线DF上,点B在直线AC上,若∠AGB=EHF,∠C=D.

试说明:∠A=F.

请同学们补充下面的解答过程,并填空(理由或数学式).

解:∵∠AGB=∠DGF________________________________

AGB=∠EHF(已知)

∴∠DGF=∠EHF________________

__________________)(____________________________

∴∠D_________)(______________________________

∵∠D=∠C(已知)

__________=∠C_________________________________

__________________)(_____________________________

∴∠A=∠F_______________________________________

【答案】对顶角相等 等量代换 DB CE 同位角相等,两直线平行 FEH 两直线平行,同位角相等 FEH 等量代换 DF AC 内错角相等,两直线平行 两直线平行,内错角相等

【解析】

根据平行的性质和判定的相关知识进行解答即可.

解:成立,理由如下:

解:∵∠AGB=∠DGF 对顶角相等)

AGB=∠EHF(已知)

∴∠DGF=∠EHF(等量代换

∴( DB)∥(CE )(同位角相等,两直线平行)

∴∠D=(∠FEH)(两直线平行,同位角相等)

∵∠D=∠C(已知)

∴(∠FEH)=∠C(等量代换)

∴(DF )∥( AC )(内错角相等,两直线平行)

∴∠A=∠F(两直线平行,内错角相等)

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】计算

(1)(-20)+(-18)-(-14)-13

(2) 8+(-3)×(-2)2

(3)

(4)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】两人骑自行车绕800米圆形跑道行驶,他们从同一地点出发,如果方向相反,每一分二十秒相遇一次,如果方向相同,每十三分二十秒相遇一次.假设二人速度不等,求各人速度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着中国传统节日端午节的临近,东方红商场决定开展欢度端午,回馈顾客的让利促销活动,对部分品牌粽子进行打折销售,其中甲品牌粽子打八折,乙品牌粽子打七五折,已知打折前,买6盒甲品牌粽子和3盒乙品牌粽子需660元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元.

(1)打折前甲、乙两种品牌粽子每盒分别为多少元?

(2)阳光敬老院需购买甲品牌粽子80盒,乙品牌粽子100盒,问打折后购买这批粽子比不打折节省了多少钱?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠C=90°,以AC为直径作⊙O,交ABD,过点OOEAB,交BCE.

(1)求证:ED为⊙O的切线;

(2)如果⊙O的半径为,ED=2,延长EO交⊙OF,连接DF、AF,求ADF的面积.

【答案】(1)证明见解析;(2)

【解析】试题分析:(1)首先连接OD,由OEAB,根据平行线与等腰三角形的性质,易证得 即可得,则可证得的切线;
(2)连接CD,根据直径所对的圆周角是直角,即可得 利用勾股定理即可求得的长,又由OEAB,证得根据相似三角形的对应边成比例,即可求得的长,然后利用三角函数的知识,求得的长,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

试题解析:(1)证明:连接OD

OEAB

∴∠COE=CADEOD=ODA

OA=OD,

∴∠OAD=ODA

∴∠COE=DOE

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD

ED的切线;

(2)连接CD,交OEM

RtODE中,

OD=32,DE=2,

OEAB

∴△COE∽△CAB

AB=5,

AC是直径,

EFAB

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面积为

型】解答
束】
25

【题目】【题目】已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.

(1)求ba的关系式和抛物线的顶点D坐标(用a的代数式表示);

(2)直线与抛物线的另外一个交点记为N,求DMN的面积与a的关系式;

(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点O00),B01)是正方形OBB1C的两个顶点,以它的对角线OB1为一边作正方形OB1B2C1,以正方形OB1B2C1的对角线OB2为一边作正方形OB2B3C2,再以正方形OB2B3C2的对角线OB3为一边作正方形OB3B4C3,依次进行下去,则点B6的坐标是(

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图已知在Rt△ABCACB = 90oAC =6BC = 8F在线段AB以点B为圆心BF为半径的圆交BC于点E射线AE交圆B于点D(点DE不重合).

1如果设BF = xEF = yyx之间的函数关系式并写出它的定义域

2如果ED的长

3联结CDBD请判断四边形ABDC是否为直角梯形?说明理由

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场计划购进两种新型节能台灯共盏,这两种台灯的进价、售价如表所示:

)若商场预计进货款为元,则这两种台灯各购进多少盏?

)若商场规定型台灯的进货数量不超过型台灯数量的倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若将一副三角板按如图所示的方式放置,则下列结论正确的是(  )

A.1=∠2B.如果∠230°,则有ACDE

C.如果∠245°,则有∠4=∠DD.如果∠250°,则有BCAE

查看答案和解析>>

同步练习册答案