【题目】如图,△ABC中,∠C=90°,AC=6,BC=,点E从A出发沿线段AC运动至点C停止,ED⊥AB,EF⊥AC,将△ADE沿直线EF翻折得到△A′D′E,设DE=x,△A′D′E与△ABC重合部分的面积为y.
(1)当x= 时,D′恰好落在BC上?
(2)求y关于x的函数关系式,并写出x的取值范围.
【答案】(1);
(2).
【解析】
(1)先根据勾股定理求出AB的值,然后根据同角的正弦函数值相等表示出AE为3x,当点D′恰好落在BC上时,再根据等角的三角函数值相等表示出EC为,然后求出x的值即可;
(2)由(1)可得AE和AD,当点A'与点C重合时,求出x的值,然后根据三角形的面积公式分三种情况讨论,求出y关于x的函数关系式即可.
解:(1)在Rt△ABC中,AB=,
∴sinA=,
∵DE=x,
∴AE=3x,
当D′恰好落在BC上时,如图所示:
ED′=ED=x,∠DEA=∠D′EC,
∴∠ED′C=∠A,
∴EC=x,
∵3x+x=6,
∴x=,
故答案为:;
(2)由(1)可得,AE=3x,
∴AD=,
当点A'与点C重合时,AE=EC=AC=3,
∴3x=3
∴x=1.
①当0<x≤1时,如图1,y=;
②当1<x≤时,如图2,
∵AE=A'E=3x,
∴AA'=6x.
∴CA'=6x﹣6.
∵tan A',
∴,
∴y=
=-;
③当时,如图3,
∵∠EIC+∠IEC=∠IEC+∠A',
∴∠EIC=∠A'.
∴ ,
∵CE=(6﹣3x),
∴
∴
=
综上所述,.
科目:初中数学 来源: 题型:
【题目】在直角坐标系xOy中,对于点P(x,y)和Q(x,y′),给出如下定义:若y′=,则称点Q为点P的“可控变点”.请问:若点P在函数y=﹣x2+16(﹣5≤x≤a)的图象上,其“可控变点”Q的纵坐标y′的取值范围是﹣16≤y′≤16,则实数a的值是____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】今年我区作为全国作文教学改革试验区,举办了中小学生现场作文大赛,全区七、八年级的学生参加了中学组的比赛,大赛组委会对参赛获奖作品的成绩进行统计,每篇获奖作品成绩为m分(60≤m≤100)绘制了如下两幅数据信息不完整的统计图表.
获奖作品成绩频数分布表
分数段 | 频数 | 频率 |
60≤x<70 | 38 | 0.38 |
70≤x<80 | a | 0.32 |
80≤x<90 | b | |
90≤x<100 | 10 | |
合计 | 1 |
请根据以上信息,解决下列问题:
(1)获奖作品成绩频数分布表中a= ,b= ;
(2)把获奖作品成绩频数分布直方图缺失的信息补全;
(3)某校八年级二班有两名男同学和两名女同学在这次大赛中获奖,并且其中两名同学获得了大赛一等奖,请用列表或画树状图法求出恰好一男一女获得一等奖的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:在平面直角坐标系中,图形G上点P的纵坐标与其横坐标的差称为P点的“坐标差”,记作Zp,而图形G上所有点的“坐标差”中的最大值称为图形G的“特征值”.
(1)①点A(3,1)的“坐标差”为 ;
②求抛物线的“特征值”;
(2)某二次函数的“特征值”为,点B,与点C分别是此二次函数的图象与轴和轴的交点,且点B与点C的“坐标差”相等.
①直接写出 ;(用含的式子表示)
②求此二次函数的表达式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某网店经营一种品牌水果,其进价为10元/千克,保鲜期为25天,每天销售量(千克)与销售单价(元/千克)之间的函数关系如图所示.
(1)求与的函数关系式;
(2)当该品牌水果定价为多少元时,每天销售所获得的利润最大?
(3)若该网店一次性购进该品牌水果3000千克,根据(2)中每天获得最大利润的方式进行销售,发现在保鲜期内不能及时销售完毕,于是决定在保鲜期的最后5天一次性降价销售,求最后5天每千克至少降价多少元才能全部售完?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB,AC均为⊙O的切线,切点分别为B,C,点D是优弧BC上一点,则下列关系式中,一定成立的是( )
A. ∠A+∠D=180°B. ∠A+2∠D=180°
C. ∠B+∠C=270°D. ∠B+2∠C=270°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在Rt△ABC中,∠ABC=90°,AB=BC,将△ABC绕点A逆时针旋转,得到△ADE,旋转角为α(0°<α<90°),连接BD交CE于点F.
(1)如图2,当α=45°时,求证:CF=EF;
(2)在旋转过程中,①问(1)中的结论是否仍然成立?证明你的结论;②连接CD,当△CDF为等腰直角三角形时,求tan的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD中,∠A=∠ABC=90°,AD=2,BC=6,点E是边CD的中点,连接BE并延长交AD的延长线于点F,连接CF.若△BCD是等腰三角形,则四边形BDFC的面积为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AD是BC上的高,且BC=9,AD=3,矩形EFGH的顶点F、G在边BC上,顶点E、H分别在边AB和AC上,如果设边EF的长为x(0<x<3),矩形EFGH的面积为y,那么y关于x的函数解析式是_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com