精英家教网 > 初中数学 > 题目详情

【题目】如图,正方形ABCD的对角线AC,BD相交于点O,延长CB至点F,使CF=CA,连接AF,∠ACF的平分线分别交AF,AB,BD于点E,N,M,连接EO.

(1)已知BD= ,求正方形ABCD的边长;
(2)猜想线段EM与CN的数量关系并加以证明.

【答案】
(1)

解:∵四边形ABCD是正方形,

∴△ABD是等腰直角三角形,

∴2AB2=BD2

∵BD=

∴AB=1,

∴正方形ABCD的边长为1;


(2)

解:CN= CM.

证明:∵CF=CA,AF是∠ACF的平分线,

∴CE⊥AF,

∴∠AEN=∠CBN=90°,

∵∠ANE=∠CNB,

∴∠BAF=∠BCN,

在△ABF和△CBN中,

∴△ABF≌△CBN(AAS),

∴AF=CN,

∵∠BAF=∠BCN,∠ACN=∠BCN,

∴∠BAF=∠OCM,

∵四边形ABCD是正方形,

∴AC⊥BD,

∴∠ABF=∠COM=90°,

∴△ABF∽△COM,

=

即CN= CM.


【解析】(1)根据正方形的性质以及勾股定理即可求得;(2)根据等腰三角形三线合一的性质证得CE⊥AF,进一步得出∠BAF=∠BCN,然后通过证得△ABF≌△CBN得出AF=CN,进而证得△ABF∽△COM,根据相似三角形的性质和正方形的性质即可证得CN= CM.本题考查了正方形的性质,勾股定理的应用,等腰三角形三线合一的性质,三角形全等的判定和性质,三角形相似的判定和性质,熟练掌握性质定理是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1,地面BD上两根等长立柱AB,CD之间悬挂一根近似成抛物线y= x2 x+3的绳子.

(1)求绳子最低点离地面的距离;
(2)因实际需要,在离AB为3米的位置处用一根立柱MN撑起绳子(如图2),使左边抛物线F1的最低点距MN为1米,离地面1.8米,求MN的长;
(3)将立柱MN的长度提升为3米,通过调整MN的位置,使抛物线F2对应函数的二次项系数始终为 ,设MN离AB的距离为m,抛物线F2的顶点离地面距离为k,当2≤k≤2.5时,求m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,以点O为圆心的圆分别交x轴的正半轴于点M,交y轴的正半轴于点N.劣弧 的长为 π,直线y=﹣ x+4与x轴、y轴分别交于点A、B.

(1)求证:直线AB与⊙O相切;
(2)求图中所示的阴影部分的面积(结果用π表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,已知AB=6,BC=8,BD的垂直平分线交AD于点E,交BC于点F,则△BOF的面积为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将△ABE向右平移2cm得到△DCF,如果△ABE的周长是16cm,那么四边形ABFD的周长是(  )

A.16cm
B.18cm
C.20cm
D.21cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】剪纸是扬州的非物质文化遗产之一,下列剪纸作品中是中心对称图形的是(  )
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知正方形ABCD的边长为4,一个以点A为顶点的45°角绕点A旋转,角的两边分别与边BC、DC的延长线交于点E、F,连接EF.设CE=a,CF=b.

(1)如图1,当∠EAF被对角线AC平分时,求a、b的值;
(2)当△AEF是直角三角形时,求a、b的值;
(3)如图3,探索∠EAF绕点A旋转的过程中a、b满足的关系式,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】环保局对某企业排污情况进行检测,结果显示:所排污水中硫化物的浓度超标,即硫化物的浓度超过最高允许的1.0mg/L.环保局要求该企业立即整改,在15天以内(含15天)排污达标.整改过程中,所排污水中硫化物的浓度y(mg/L)与时间x(天)的变化规律如图所示,其中线段AB表示前3天的变化规律,从第3天起,所排污水中硫化物的浓度y与时间x成反比例关系.

(1)求整改过程中硫化物的浓度y与时间x的函数表达式;
(2)该企业所排污水中硫化物的浓度,能否在15天以内不超过最高允许的1.0mg/L?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:
(1)|﹣ |﹣(﹣2011)0+4÷(﹣2)3
(2)

查看答案和解析>>

同步练习册答案