【题目】当图形具有邻边相等的特征时,我们可以把图形的一部分绕着公共端点旋转,这样将分散的条件集中起来,从而达到解决问题的目的
如图1,等腰直角三角形内有一点连接为探究三条线段间的数量关系,我们可以将绕点逆时针旋转得到连接则___ ____是_ 三角形,三条线段的数量关系是_ ;
如图2,等边三角形内一点P,连接请借助第一问的方法探究三条线段间的数量关系.
如图3 ,在四边形中,点在四边形内部,且请直接写出的长.
科目:初中数学 来源: 题型:
【题目】如图1,在中,,,点、分别在边、上,,连结,点、、分别为、、的中点.
(1)观察猜想图1中,线段与的数量关系是_______,位置关系是_______;
(2)探究证明把绕点逆时针方向旋转到图2的位置,连结、、,判断的形状,并说明理由;
(3)拓展延伸把绕点在平面内自由旋转,若,,请直接写出面积的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(2016湖北省黄冈市)如图,已知点A(1,a)是反比例函数的图象上一点,直线与反比例函数的图象在第四象限的交点为点B.
(1)求直线AB的解析式;
(2)动点P(x,0)在x轴的正半轴上运动,当线段PA与线段PB之差达到最大时,求点P的坐标.
【答案】(1)y=x﹣4;(2)P(4,0).
【解析】试题分析:(1)先把A(1,a)代入反比例函数解析式求出a得到A点坐标,再解方程组,得B点坐标,然后利用待定系数法求AB的解析式;
(2)直线AB交x轴于点Q,如图,利用x轴上点的坐标特征得到Q点坐标,则PA﹣PB≤AB(当P、A、B共线时取等号),于是可判断当P点运动到Q点时,线段PA与线段PB之差达到最大,从而得到P点坐标.
试题解析:(1)把A(1,a)代入得a=﹣3,则A(1,﹣3),解方程组: ,得: 或,则B(3,﹣1),设直线AB的解析式为y=kx+b,把A(1,﹣3),B(3,﹣1)代入得: ,解得: ,所以直线AB的解析式为y=x﹣4;
(2)直线AB交x轴于点Q,如图,当y=0时,x﹣4=0,解得x=4,则Q(4,0),因为PA﹣PB≤AB(当P、A、B共线时取等号),所以当P点运动到Q点时,线段PA与线段PB之差达到最大,此时P点坐标为(4,0).
考点:反比例函数与一次函数的交点问题.
【题型】解答题
【结束】
22
【题目】成都三圣乡花卉基地出售两种盆栽花卉:太阳花6元/盆,绣球花10元/盆.若一次购买的绣球花超过20盆时,超过20盆部分的绣球花价格打8折.
(1)若小张家花台绿化需用60盆两种盆栽花卉,小张爸爸给他460元钱去购买,问两种花卉各买了多少盆?
(2)分别写出两种花卉的付款金额y(元)关于购买量x(盆)的函数解析式;
(3)为了美化环境,花园小区计划到该基地购买这两种花卉共90盆,其中太阳花数量不超过绣球花数量的一半.两种花卉各买多少盆时,总费用最少,最少费用是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,点是以为直径的半圆上任意一点(不与点重合),连接并延长至点使连接交半圆于点过点作于点.
求证:.
如图2,连接.
①当 时,四边形是菱形;
②当 时,四边形是正方形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】钟南山院士谈到防护新型冠状病毒肺炎时说:“我们需要重视防护,但也不必恐慌,尽量少去人员密集的场所,出门戴口罩,在室内注意通风,勤洗手,多运动,少熬夜.”某社区为了加强社区居民对新型冠状病毒肺炎防护知识的了解,通过微信群宣传新型冠状病毒肺炎的防护知识,并鼓励社区居民在线参与作答《2020年新型冠状病毒防治全国统一考试(全国卷)》试卷(满分100分),社区管理员随机从有400人的某小区抽取40名人员的答卷成绩,并对他们的成绩(单位:分)统计如下:
85 | 80 | 95 | 100 | 90 | 95 | 85 | 65 | 75 | 85 |
90 | 90 | 70 | 90 | 100 | 80 | 80 | 90 | 95 | 75 |
80 | 60 | 80 | 95 | 85 | 100 | 90 | 85 | 85 | 80 |
95 | 75 | 80 | 90 | 70 | 80 | 95 | 75 | 100 | 90 |
根据数据绘制了如下的表格和统计图:
等级 | 成绩() | 频率 | 频率 |
10 | 0.25 | ||
12 | 0.3 | ||
合计 | 40 | 1 |
根据上面提供的信息,回答下列问题:
(1)统计表中的 , ;
(2)请补全条形统计图;
(3)根据抽样调查结果,请估计该小区答题成绩为“级”的有多少人?
(4)该社区有2名男管理员和2名女管理员,现从中随机挑选2名管理员参加“社区防控”宣传活动,请用树状图法或列表法求出恰好选中“1男1女”的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两人在一条长为600m的笔直道路上均匀地跑步,速度分别为和,起跑前乙在起点,甲在乙前面50m处,若两人同时起跑,则从起跑出发到其中一人先到达终点的过程中,两人之间的距离y(m)与时间t(s)的函数图象是( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,,,为中点,点在延长线上,,,,交于点.
(1)若,求的度数;
(2)求证:;
(3)设交于点.
①若,,求的值;
②连结,分别记,,的面积为,,,当时, .(直接写出答案)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com